Cargando…
Severity Prediction for COVID-19 Patients via Recurrent Neural Networks
The novel coronavirus disease-2019 (COVID-19) pandemic has threatened the health of tens of millions of people worldwide and imposed heavy burden on global healthcare systems. In this paper, we propose a model to predict whether a patient infected with COVID-19 will develop severe outcomes based onl...
Autores principales: | Lee, Junghwan, Ta, Casey, Kim, Jae Hyun, Liu, Cong, Weng, Chunhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7836132/ https://www.ncbi.nlm.nih.gov/pubmed/33501460 http://dx.doi.org/10.1101/2020.08.28.20184200 |
Ejemplares similares
-
Columbia Open Health Data for COVID-19 Research: Database Analysis
por: Lee, Junghwan, et al.
Publicado: (2021) -
A Retrospective Analysis of COVID-19 mRNA Vaccine Breakthrough Infections – Risk Factors and Vaccine Effectiveness
por: Liu, Cong, et al.
Publicado: (2021) -
Comparative effectiveness of medical concept embedding for feature engineering in phenotyping
por: Lee, Junghwan, et al.
Publicado: (2021) -
Risk Factors Associated With SARS-CoV-2 Breakthrough Infections in Fully mRNA-Vaccinated Individuals: Retrospective Analysis
por: Liu, Cong, et al.
Publicado: (2022) -
A machine learning approach to identifying delirium from electronic health records
por: Kim, Jae Hyun, et al.
Publicado: (2022)