Cargando…
Identifying bias in models that detect vocal fold paralysis from audio recordings using explainable machine learning and clinician ratings
INTRODUCTION. Detecting voice disorders from voice recordings could allow for frequent, remote, and low-cost screening before costly clinical visits and a more invasive laryngoscopy examination. Our goals were to detect unilateral vocal fold paralysis (UVFP) from voice recordings using machine learn...
Autores principales: | Low, Daniel M., Rao, Vishwanatha, Randolph, Gregory, Song, Phillip C., Ghosh, Satrajit S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7836138/ https://www.ncbi.nlm.nih.gov/pubmed/33501466 http://dx.doi.org/10.1101/2020.11.23.20235945 |
Ejemplares similares
-
Artificial intelligence for the recognition of benign lesions of vocal folds from audio recordings
por: Marchese, Maria Raffaella, et al.
Publicado: (2023) -
Voice and vocal fold position in men with unilateral vocal fold paralysis
por: Schwarz, Karine, et al.
Publicado: (2015) -
Vocal fold paralysis in subacute thyroiditis
por: Aparecido Dedivitis, Rogério, et al.
Publicado: (2015) -
Glossopharyngeal schwannoma causing vocal fold paralysis
por: Liquidato, Bianca Maria, et al.
Publicado: (2015) -
Importance of Imaging in Congenital Unilateral Vocal Fold Paralysis: A Case of Neck Neuroblastoma Presenting with Unilateral Vocal Fold Paralysis
por: Yeo, W. X., et al.
Publicado: (2021)