Cargando…
Detection of human auditory evoked brain signals with a resilient nonlinear optically pumped magnetometer
Optically Pumped Magnetometers (OPMs) have been hailed as the future of human magnetoencephalography, as they enable a level of flexibility and adaptability that cannot be obtained with systems based on superconductors. While OPM sensors are already commercially available, there is plenty of room fo...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7836231/ https://www.ncbi.nlm.nih.gov/pubmed/33132074 http://dx.doi.org/10.1016/j.neuroimage.2020.117497 |
_version_ | 1783642703561490432 |
---|---|
author | Kowalczyk, Anna U. Bezsudnova, Yulia Jensen, Ole Barontini, Giovanni |
author_facet | Kowalczyk, Anna U. Bezsudnova, Yulia Jensen, Ole Barontini, Giovanni |
author_sort | Kowalczyk, Anna U. |
collection | PubMed |
description | Optically Pumped Magnetometers (OPMs) have been hailed as the future of human magnetoencephalography, as they enable a level of flexibility and adaptability that cannot be obtained with systems based on superconductors. While OPM sensors are already commercially available, there is plenty of room for further improvements and customization. In this work, we detected auditory evoked brain fields using an OPM based on the nonlinear magneto-optical rotation (NMOR) technique. Our sensor head, containing only optical and non-magnetizable elements, is connected to an external module including all the electronic components, placed outside the magnetically shielded room. The use of the NMOR allowed us to detect the brain signals in non-zero magnetic field environments. In particular, we were able to detect auditory evoked fields in a background field of 70 nT. We benchmarked our sensor with conventional SQUID sensors, showing comparable performance. We further demonstrated that our sensor can be employed to detect modulations of brain oscillations in the alpha band. Our results are a promising stepping-stone towards the realization of resilient OPM-based magnetoencephalography systems that do not require active compensation. |
format | Online Article Text |
id | pubmed-7836231 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Academic Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-78362312021-02-01 Detection of human auditory evoked brain signals with a resilient nonlinear optically pumped magnetometer Kowalczyk, Anna U. Bezsudnova, Yulia Jensen, Ole Barontini, Giovanni Neuroimage Article Optically Pumped Magnetometers (OPMs) have been hailed as the future of human magnetoencephalography, as they enable a level of flexibility and adaptability that cannot be obtained with systems based on superconductors. While OPM sensors are already commercially available, there is plenty of room for further improvements and customization. In this work, we detected auditory evoked brain fields using an OPM based on the nonlinear magneto-optical rotation (NMOR) technique. Our sensor head, containing only optical and non-magnetizable elements, is connected to an external module including all the electronic components, placed outside the magnetically shielded room. The use of the NMOR allowed us to detect the brain signals in non-zero magnetic field environments. In particular, we were able to detect auditory evoked fields in a background field of 70 nT. We benchmarked our sensor with conventional SQUID sensors, showing comparable performance. We further demonstrated that our sensor can be employed to detect modulations of brain oscillations in the alpha band. Our results are a promising stepping-stone towards the realization of resilient OPM-based magnetoencephalography systems that do not require active compensation. Academic Press 2021-02-01 /pmc/articles/PMC7836231/ /pubmed/33132074 http://dx.doi.org/10.1016/j.neuroimage.2020.117497 Text en Crown Copyright © 2020 Published by Elsevier Inc. http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kowalczyk, Anna U. Bezsudnova, Yulia Jensen, Ole Barontini, Giovanni Detection of human auditory evoked brain signals with a resilient nonlinear optically pumped magnetometer |
title | Detection of human auditory evoked brain signals with a resilient nonlinear optically pumped magnetometer |
title_full | Detection of human auditory evoked brain signals with a resilient nonlinear optically pumped magnetometer |
title_fullStr | Detection of human auditory evoked brain signals with a resilient nonlinear optically pumped magnetometer |
title_full_unstemmed | Detection of human auditory evoked brain signals with a resilient nonlinear optically pumped magnetometer |
title_short | Detection of human auditory evoked brain signals with a resilient nonlinear optically pumped magnetometer |
title_sort | detection of human auditory evoked brain signals with a resilient nonlinear optically pumped magnetometer |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7836231/ https://www.ncbi.nlm.nih.gov/pubmed/33132074 http://dx.doi.org/10.1016/j.neuroimage.2020.117497 |
work_keys_str_mv | AT kowalczykannau detectionofhumanauditoryevokedbrainsignalswitharesilientnonlinearopticallypumpedmagnetometer AT bezsudnovayulia detectionofhumanauditoryevokedbrainsignalswitharesilientnonlinearopticallypumpedmagnetometer AT jensenole detectionofhumanauditoryevokedbrainsignalswitharesilientnonlinearopticallypumpedmagnetometer AT barontinigiovanni detectionofhumanauditoryevokedbrainsignalswitharesilientnonlinearopticallypumpedmagnetometer |