Cargando…
COVID-19 cases prediction by using hybrid machine learning and beetle antennae search approach
The main objective of this paper is to further improve the current time-series prediction (forecasting) algorithms based on hybrids between machine learning and nature-inspired algorithms. After the recent COVID-19 outbreak, almost all countries were forced to impose strict measures and regulations...
Autores principales: | Zivkovic, Miodrag, Bacanin, Nebojsa, Venkatachalam, K., Nayyar, Anand, Djordjevic, Aleksandar, Strumberger, Ivana, Al-Turjman, Fadi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7836389/ https://www.ncbi.nlm.nih.gov/pubmed/33520607 http://dx.doi.org/10.1016/j.scs.2020.102669 |
Ejemplares similares
-
Hybridized sine cosine algorithm with convolutional neural networks dropout regularization application
por: Bacanin, Nebojsa, et al.
Publicado: (2022) -
Potential of Coupling Metaheuristics-Optimized-XGBoost and SHAP in Revealing PAHs Environmental Fate
por: Jovanovic, Gordana, et al.
Publicado: (2023) -
Novel chaotic oppositional fruit fly optimization algorithm for feature selection applied on COVID 19 patients’ health prediction
por: Bacanin, Nebojsa, et al.
Publicado: (2022) -
Novel hybrid firefly algorithm: an application to enhance XGBoost tuning for intrusion detection classification
por: Zivkovic, Miodrag, et al.
Publicado: (2022) -
Performance of Elephant Herding Optimization and Tree Growth Algorithm Adapted for Node Localization in Wireless Sensor Networks
por: Strumberger, Ivana, et al.
Publicado: (2019)