Cargando…

Downregulation of microRNA-146a in diabetes, obesity and hypertension may contribute to severe COVID-19

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is able to produce an excessive host immune reaction and may leads to severe disease- a life-threatening condition occurring more often in patients suffering from comorbidities such as hypertension, diabetes and obesity. Infe...

Descripción completa

Detalles Bibliográficos
Autor principal: Roganović, Jelena
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7836676/
https://www.ncbi.nlm.nih.gov/pubmed/33338955
http://dx.doi.org/10.1016/j.mehy.2020.110448
Descripción
Sumario:The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is able to produce an excessive host immune reaction and may leads to severe disease- a life-threatening condition occurring more often in patients suffering from comorbidities such as hypertension, diabetes and obesity. Infection by human corona viruses highly depends on host microRNA (miR) involved in regulation of host innate immune response and inflammation-modulatory miR-146a is among the first miRs induced by immune reaction to a virus. Moreover, recent analysis showed that miR-146 is predicted to target at the SARS-CoV-2 genome. As the dominant regulator of Toll-like receptors (TLRs) downstream signaling, miR-146a may limit excessive inflammatory response to virus. Downregulation of circulating miR-146a was found in diabetes, obesity and hypertension and it is reflected by enhanced inflammation and fibrosis, systemic effects accompanying severe COVID-19. Thus it could be hypothesized that miR-146a deficiency may contribute to severe COVID-19 state observed in diabetes, obesity and hypertension but further investigations are needed.