Cargando…

A mathematical model for COVID-19 transmission by using the Caputo fractional derivative

We present a mathematical model for the transmission of COVID-19 by the Caputo fractional-order derivative. We calculate the equilibrium points and the reproduction number for the model and obtain the region of the feasibility of system. By fixed point theory, we prove the existence of a unique solu...

Descripción completa

Detalles Bibliográficos
Autores principales: Tuan, Nguyen Huy, Mohammadi, Hakimeh, Rezapour, Shahram
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7836840/
https://www.ncbi.nlm.nih.gov/pubmed/33519107
http://dx.doi.org/10.1016/j.chaos.2020.110107
Descripción
Sumario:We present a mathematical model for the transmission of COVID-19 by the Caputo fractional-order derivative. We calculate the equilibrium points and the reproduction number for the model and obtain the region of the feasibility of system. By fixed point theory, we prove the existence of a unique solution. Using the generalized Adams-Bashforth-Moulton method, we solve the system and obtain the approximate solutions. We present a numerical simulation for the transmission of COVID-19 in the world, and in this simulation, the reproduction number is obtained as [Formula: see text] which shows that the epidemic continues.