Cargando…
FSS-2019-nCov: A deep learning architecture for semi-supervised few-shot segmentation of COVID-19 infection
The newly discovered coronavirus (COVID-19) pneumonia is providing major challenges to research in terms of diagnosis and disease quantification. Deep-learning (DL) techniques allow extremely precise image segmentation; yet, they necessitate huge volumes of manually labeled data to be trained in a s...
Autores principales: | Abdel-Basset, Mohamed, Chang, Victor, Hawash, Hossam, Chakrabortty, Ripon K., Ryan, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7836902/ https://www.ncbi.nlm.nih.gov/pubmed/33519100 http://dx.doi.org/10.1016/j.knosys.2020.106647 |
Ejemplares similares
-
RCTE: A reliable and consistent temporal-ensembling framework for semi-supervised segmentation of COVID-19 lesions
por: Ding, Weiping, et al.
Publicado: (2021) -
Semi-supervised few-shot learning approach for plant diseases recognition
por: Li, Yang, et al.
Publicado: (2021) -
SSA-Net: Spatial self-attention network for COVID-19 pneumonia infection segmentation with semi-supervised few-shot learning
por: Wang, Xiaoyan, et al.
Publicado: (2022) -
MIC-Net: A deep network for cross-site segmentation of COVID-19 infection in the fog-assisted IoMT
por: Ding, Weiping, et al.
Publicado: (2023) -
Intelligent model for contemporary supply chain barriers in manufacturing sectors under the impact of the COVID-19 pandemic
por: Gamal, Abduallah, et al.
Publicado: (2022)