Cargando…
COVID-19 classification by CCSHNet with deep fusion using transfer learning and discriminant correlation analysis
AIM: : COVID-19 is a disease caused by a new strain of coronavirus. Up to 18th October 2020, worldwide there have been 39.6 million confirmed cases resulting in more than 1.1 million deaths. To improve diagnosis, we aimed to design and develop a novel advanced AI system for COVID-19 classification b...
Autores principales: | Wang, Shui-Hua, Nayak, Deepak Ranjan, Guttery, David S., Zhang, Xin, Zhang, Yu-Dong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7837204/ https://www.ncbi.nlm.nih.gov/pubmed/33519321 http://dx.doi.org/10.1016/j.inffus.2020.11.005 |
Ejemplares similares
-
Alcoholism Identification Based on an AlexNet Transfer Learning Model
por: Wang, Shui-Hua, et al.
Publicado: (2019) -
Covid-19 classification by FGCNet with deep feature fusion from graph convolutional network and convolutional neural network
por: Wang, Shui-Hua, et al.
Publicado: (2021) -
Mammographic image classification with deep fusion learning
por: Yu, Xiangchun, et al.
Publicado: (2020) -
Deep Transfer Learning for the Multilabel Classification of Chest X-ray Images
por: Huang, Guan-Hua, et al.
Publicado: (2022) -
An Enhanced Transfer Learning Based Classification for Diagnosis of Skin Cancer
por: Anand, Vatsala, et al.
Publicado: (2022)