Cargando…
Current Advances in Immunotherapy for Glioblastoma
PURPOSE OF REVIEW: This review seeks to inform oncology clinicians and researchers about the development of novel immunotherapies for the treatment of glioblastoma. An enumeration of ongoing and recently completed clinical trials will be discussed with special attention given to current technologies...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7838142/ https://www.ncbi.nlm.nih.gov/pubmed/33496872 http://dx.doi.org/10.1007/s11912-020-01007-5 |
Sumario: | PURPOSE OF REVIEW: This review seeks to inform oncology clinicians and researchers about the development of novel immunotherapies for the treatment of glioblastoma. An enumeration of ongoing and recently completed clinical trials will be discussed with special attention given to current technologies implemented to overcome central nervous system–specific challenges including barriers to the peripheral immune system, impaired antigen presentation, and T cell dysfunction. RECENT FINDINGS: The success of immunotherapy in other solid cancers has served as a catalyst to explore its application in glioblastoma, which has limited response to other treatments. Recent developments include multi-antigen vaccines that seek to overcome the heterogeneity of glioblastoma, as well as immune checkpoint inhibitors, which could amplify the adaptive immune response and may have promise in combinatorial approaches. Additionally, oncolytic and retroviruses have opened the door to a plethora of combinatorial approaches aiming to leverage their immunogenicity and/or ability to carry therapeutic transgenes. SUMMARY: Treatment of glioblastoma remains a serious challenge both with regard to immune-based as well as other therapeutic strategies. The disease has proven to be highly resistant to treatment due to a combination of tumor heterogeneity, adaptive expansion of resistant cellular subclones, evasion of immune surveillance, and manipulation of various signaling pathways involved in tumor progression and immune response. Immunotherapeutics that are efficacious in other cancer types have unfortunately not enjoyed the same success in glioblastoma, illustrating the challenging and complex nature of this disease and demonstrating the need for development of multimodal treatment regimens utilizing the synergistic qualities of immune-mediated therapies. |
---|