Cargando…
Predicting the central 10 degrees visual field in glaucoma by applying a deep learning algorithm to optical coherence tomography images
We aimed to develop a model to predict visual field (VF) in the central 10 degrees in patients with glaucoma, by training a convolutional neural network (CNN) with optical coherence tomography (OCT) images and adjusting the values with Humphrey Field Analyzer (HFA) 24–2 test. The training dataset in...
Autores principales: | Asano, Shotaro, Asaoka, Ryo, Murata, Hiroshi, Hashimoto, Yohei, Miki, Atsuya, Mori, Kazuhiko, Ikeda, Yoko, Kanamoto, Takashi, Yamagami, Junkichi, Inoue, Kenji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7838164/ https://www.ncbi.nlm.nih.gov/pubmed/33500462 http://dx.doi.org/10.1038/s41598-020-79494-6 |
Ejemplares similares
-
Predicting 10-2 Visual Field From Optical Coherence Tomography in Glaucoma Using Deep Learning Corrected With 24-2/30-2 Visual Field
por: Hashimoto, Yohei, et al.
Publicado: (2021) -
Relationship Between Macular Ganglion Cell Thickness and Ocular Elongation as Measured by Axial Length and Retinal Artery Position
por: Omoto, Takashi, et al.
Publicado: (2020) -
The association between photoreceptor layer thickness measured by optical coherence tomography and visual sensitivity in glaucomatous eyes
por: Asaoka, Ryo, et al.
Publicado: (2017) -
Comparing Structure-Function Relationships Based on Drasdo's and Sjöstrand's Retinal Ganglion Cell Displacement Models
por: Hirasawa, Kazunori, et al.
Publicado: (2020) -
Improving the structure-function relationship in glaucomatous and normative eyes by incorporating photoreceptor layer thickness
por: Matsuura, Masato, et al.
Publicado: (2018)