Cargando…
A deep learning-based model for screening and staging pneumoconiosis
This study aims to develop an artificial intelligence (AI)-based model to assist radiologists in pneumoconiosis screening and staging using chest radiographs. The model, based on chest radiographs, was developed using a training cohort and validated using an independent test cohort. Every image in t...
Autores principales: | Zhang, Liuzhuo, Rong, Ruichen, Li, Qiwei, Yang, Donghan M., Yao, Bo, Luo, Danni, Zhang, Xiong, Zhu, Xianfeng, Luo, Jun, Liu, Yongquan, Yang, Xinyue, Ji, Xiang, Liu, Zhidong, Xie, Yang, Sha, Yan, Li, Zhimin, Xiao, Guanghua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7838184/ https://www.ncbi.nlm.nih.gov/pubmed/33500426 http://dx.doi.org/10.1038/s41598-020-77924-z |
Ejemplares similares
-
ScopeViewer: A Browser-Based Solution for Visualizing Spatial Transcriptomics Data
por: Luo, Danni, et al.
Publicado: (2023) -
Pneumoconiosis
por: Cullinan, Paul, et al.
Publicado: (2013) -
Pneumoconiosis: current status and future prospects
por: Qi, Xian-Mei, et al.
Publicado: (2021) -
Novel lipidomes profile and clinical phenotype identified in pneumoconiosis patients
por: Shi, Liyong, et al.
Publicado: (2023) -
Deep Learning of Cell Spatial Organizations Identifies Clinically Relevant Insights in Tissue Images
por: Wang, Shidan, et al.
Publicado: (2023)