Cargando…

Ultrafast electron cooling in an expanding ultracold plasma

Plasma dynamics critically depends on density and temperature, thus well-controlled experimental realizations are essential benchmarks for theoretical models. The formation of an ultracold plasma can be triggered by ionizing a tunable number of atoms in a micrometer-sized volume of a (87)Rb Bose-Ein...

Descripción completa

Detalles Bibliográficos
Autores principales: Kroker, Tobias, Großmann, Mario, Sengstock, Klaus, Drescher, Markus, Wessels-Staarmann, Philipp, Simonet, Juliette
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7838291/
https://www.ncbi.nlm.nih.gov/pubmed/33500420
http://dx.doi.org/10.1038/s41467-020-20815-8
Descripción
Sumario:Plasma dynamics critically depends on density and temperature, thus well-controlled experimental realizations are essential benchmarks for theoretical models. The formation of an ultracold plasma can be triggered by ionizing a tunable number of atoms in a micrometer-sized volume of a (87)Rb Bose-Einstein condensate (BEC) by a single femtosecond laser pulse. The large density combined with the low temperature of the BEC give rise to an initially strongly coupled plasma in a so far unexplored regime bridging ultracold neutral plasma and ionized nanoclusters. Here, we report on ultrafast cooling of electrons, trapped on orbital trajectories in the long-range Coulomb potential of the dense ionic core, with a cooling rate of 400 K ps(−1). Furthermore, our experimental setup grants direct access to the electron temperature that relaxes from 5250 K to below 10 K in less than 500 ns.