Cargando…
Methylene Blue Inhibits the SARS-CoV-2 Spike–ACE2 Protein-Protein Interaction–a Mechanism that can Contribute to its Antiviral Activity Against COVID-19
Due to our interest in the chemical space of organic dyes to identify potential small-molecule inhibitors (SMIs) for protein-protein interactions (PPIs), we initiated a screen of such compounds to assess their inhibitory activity against the interaction between SARS-CoV-2 spike protein and its cogna...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7838506/ https://www.ncbi.nlm.nih.gov/pubmed/33519460 http://dx.doi.org/10.3389/fphar.2020.600372 |
_version_ | 1783643194301349888 |
---|---|
author | Bojadzic, Damir Alcazar, Oscar Buchwald, Peter |
author_facet | Bojadzic, Damir Alcazar, Oscar Buchwald, Peter |
author_sort | Bojadzic, Damir |
collection | PubMed |
description | Due to our interest in the chemical space of organic dyes to identify potential small-molecule inhibitors (SMIs) for protein-protein interactions (PPIs), we initiated a screen of such compounds to assess their inhibitory activity against the interaction between SARS-CoV-2 spike protein and its cognate receptor ACE2, which is the first critical step initiating the viral attachment and entry of this coronavirus responsible for the ongoing COVID-19 pandemic. As part of this, we found that methylene blue, a tricyclic phenothiazine compound approved by the FDA for the treatment of methemoglobinemia and used for other medical applications (including the inactivation of viruses in blood products prior to transfusion when activated by light), inhibits this interaction. We confirmed that it does so in a concentration-dependent manner with a low micromolar half-maximal inhibitory concentration (IC(50) = 3 μM) in our protein-based ELISA-type setup, while chloroquine, siramesine, and suramin showed no inhibitory activity in this assay. Erythrosine B, which we have shown before to be a promiscuous SMI of PPIs, also inhibited this interaction. Methylene blue inhibited the entry of a SARS-CoV-2 spike bearing pseudovirus into ACE2-expressing cells with similar IC(50) (3.5 μM). Hence, this PPI inhibitory activity could contribute to its antiviral activity against SARS-CoV-2 even in the absence of light by blocking its attachment to ACE2-expressing cells and making this inexpensive and widely available drug potentially useful in the prevention and treatment of COVID-19 as an oral or inhaled medication. |
format | Online Article Text |
id | pubmed-7838506 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-78385062021-01-28 Methylene Blue Inhibits the SARS-CoV-2 Spike–ACE2 Protein-Protein Interaction–a Mechanism that can Contribute to its Antiviral Activity Against COVID-19 Bojadzic, Damir Alcazar, Oscar Buchwald, Peter Front Pharmacol Pharmacology Due to our interest in the chemical space of organic dyes to identify potential small-molecule inhibitors (SMIs) for protein-protein interactions (PPIs), we initiated a screen of such compounds to assess their inhibitory activity against the interaction between SARS-CoV-2 spike protein and its cognate receptor ACE2, which is the first critical step initiating the viral attachment and entry of this coronavirus responsible for the ongoing COVID-19 pandemic. As part of this, we found that methylene blue, a tricyclic phenothiazine compound approved by the FDA for the treatment of methemoglobinemia and used for other medical applications (including the inactivation of viruses in blood products prior to transfusion when activated by light), inhibits this interaction. We confirmed that it does so in a concentration-dependent manner with a low micromolar half-maximal inhibitory concentration (IC(50) = 3 μM) in our protein-based ELISA-type setup, while chloroquine, siramesine, and suramin showed no inhibitory activity in this assay. Erythrosine B, which we have shown before to be a promiscuous SMI of PPIs, also inhibited this interaction. Methylene blue inhibited the entry of a SARS-CoV-2 spike bearing pseudovirus into ACE2-expressing cells with similar IC(50) (3.5 μM). Hence, this PPI inhibitory activity could contribute to its antiviral activity against SARS-CoV-2 even in the absence of light by blocking its attachment to ACE2-expressing cells and making this inexpensive and widely available drug potentially useful in the prevention and treatment of COVID-19 as an oral or inhaled medication. Frontiers Media S.A. 2021-01-13 /pmc/articles/PMC7838506/ /pubmed/33519460 http://dx.doi.org/10.3389/fphar.2020.600372 Text en Copyright © 2021 Bojadzic, Alcazar and Buchwald http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) (http://creativecommons.org/licenses/by/4.0/) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Pharmacology Bojadzic, Damir Alcazar, Oscar Buchwald, Peter Methylene Blue Inhibits the SARS-CoV-2 Spike–ACE2 Protein-Protein Interaction–a Mechanism that can Contribute to its Antiviral Activity Against COVID-19 |
title | Methylene Blue Inhibits the SARS-CoV-2 Spike–ACE2 Protein-Protein Interaction–a Mechanism that can Contribute to its Antiviral Activity Against COVID-19 |
title_full | Methylene Blue Inhibits the SARS-CoV-2 Spike–ACE2 Protein-Protein Interaction–a Mechanism that can Contribute to its Antiviral Activity Against COVID-19 |
title_fullStr | Methylene Blue Inhibits the SARS-CoV-2 Spike–ACE2 Protein-Protein Interaction–a Mechanism that can Contribute to its Antiviral Activity Against COVID-19 |
title_full_unstemmed | Methylene Blue Inhibits the SARS-CoV-2 Spike–ACE2 Protein-Protein Interaction–a Mechanism that can Contribute to its Antiviral Activity Against COVID-19 |
title_short | Methylene Blue Inhibits the SARS-CoV-2 Spike–ACE2 Protein-Protein Interaction–a Mechanism that can Contribute to its Antiviral Activity Against COVID-19 |
title_sort | methylene blue inhibits the sars-cov-2 spike–ace2 protein-protein interaction–a mechanism that can contribute to its antiviral activity against covid-19 |
topic | Pharmacology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7838506/ https://www.ncbi.nlm.nih.gov/pubmed/33519460 http://dx.doi.org/10.3389/fphar.2020.600372 |
work_keys_str_mv | AT bojadzicdamir methyleneblueinhibitsthesarscov2spikeace2proteinproteininteractionamechanismthatcancontributetoitsantiviralactivityagainstcovid19 AT alcazaroscar methyleneblueinhibitsthesarscov2spikeace2proteinproteininteractionamechanismthatcancontributetoitsantiviralactivityagainstcovid19 AT buchwaldpeter methyleneblueinhibitsthesarscov2spikeace2proteinproteininteractionamechanismthatcancontributetoitsantiviralactivityagainstcovid19 |