Cargando…
A Dynamic Multi-Scale Network for EEG Signal Classification
Accurate and automatic classification of the speech imagery electroencephalography (EEG) signals from a Brain-Computer Interface (BCI) system is highly demanded in clinical diagnosis. The key factor in designing an automatic classification system is to extract essential features from the original in...
Autores principales: | Zhang, Guokai, Luo, Jihao, Han, Letong, Lu, Zhuyin, Hua, Rong, Chen, Jianqing, Che, Wenliang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7838674/ https://www.ncbi.nlm.nih.gov/pubmed/33519352 http://dx.doi.org/10.3389/fnins.2020.578255 |
Ejemplares similares
-
MNL-Network: A Multi-Scale Non-local Network for Epilepsy Detection From EEG Signals
por: Zhang, Guokai, et al.
Publicado: (2020) -
A One-Dimensional CNN-LSTM Model for Epileptic Seizure Recognition Using EEG Signal Analysis
por: Xu, Gaowei, et al.
Publicado: (2020) -
Classification of EEG Signals Based on Pattern Recognition Approach
por: Amin, Hafeez Ullah, et al.
Publicado: (2017) -
Evolutionary Algorithm Based Feature Optimization for Multi-Channel EEG Classification
por: Wang, Yubo, et al.
Publicado: (2017) -
MSATNet: multi-scale adaptive transformer network for motor imagery classification
por: Hu, Lingyan, et al.
Publicado: (2023)