Cargando…

Machine Learning-Driven and Smartphone-Based Fluorescence Detection for CRISPR Diagnostic of SARS-CoV-2

[Image: see text] Rapid, accurate, and low-cost detection of SARS-CoV-2 is crucial to contain the transmission of COVID-19. Here, we present a cost-effective smartphone-based device coupled with machine learning-driven software that evaluates the fluorescence signals of the CRISPR diagnostic of SARS...

Descripción completa

Detalles Bibliográficos
Autores principales: Samacoits, Aubin, Nimsamer, Pattaraporn, Mayuramart, Oraphan, Chantaravisoot, Naphat, Sitthi-amorn, Pitchaya, Nakhakes, Chajchawan, Luangkamchorn, Lumrung, Tongcham, Phongsakhon, Zahm, Ugo, Suphanpayak, Suchada, Padungwattanachoke, Natta, Leelarthaphin, Nutcha, Huayhongthong, Hathaichanok, Pisitkun, Trairak, Payungporn, Sunchai, Hannanta-anan, Pimkhuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7839157/
https://www.ncbi.nlm.nih.gov/pubmed/33553890
http://dx.doi.org/10.1021/acsomega.0c04929
_version_ 1783643337775906816
author Samacoits, Aubin
Nimsamer, Pattaraporn
Mayuramart, Oraphan
Chantaravisoot, Naphat
Sitthi-amorn, Pitchaya
Nakhakes, Chajchawan
Luangkamchorn, Lumrung
Tongcham, Phongsakhon
Zahm, Ugo
Suphanpayak, Suchada
Padungwattanachoke, Natta
Leelarthaphin, Nutcha
Huayhongthong, Hathaichanok
Pisitkun, Trairak
Payungporn, Sunchai
Hannanta-anan, Pimkhuan
author_facet Samacoits, Aubin
Nimsamer, Pattaraporn
Mayuramart, Oraphan
Chantaravisoot, Naphat
Sitthi-amorn, Pitchaya
Nakhakes, Chajchawan
Luangkamchorn, Lumrung
Tongcham, Phongsakhon
Zahm, Ugo
Suphanpayak, Suchada
Padungwattanachoke, Natta
Leelarthaphin, Nutcha
Huayhongthong, Hathaichanok
Pisitkun, Trairak
Payungporn, Sunchai
Hannanta-anan, Pimkhuan
author_sort Samacoits, Aubin
collection PubMed
description [Image: see text] Rapid, accurate, and low-cost detection of SARS-CoV-2 is crucial to contain the transmission of COVID-19. Here, we present a cost-effective smartphone-based device coupled with machine learning-driven software that evaluates the fluorescence signals of the CRISPR diagnostic of SARS-CoV-2. The device consists of a three-dimensional (3D)-printed housing and low-cost optic components that allow excitation of fluorescent reporters and selective transmission of the fluorescence emission to a smartphone. Custom software equipped with a binary classification model has been developed to quantify the acquired fluorescence images and determine the presence of the virus. Our detection system has a limit of detection (LoD) of 6.25 RNA copies/μL on laboratory samples and produces a test accuracy of 95% and sensitivity of 97% on 96 nasopharyngeal swab samples with transmissible viral loads. Our quantitative fluorescence score shows a strong correlation with the quantitative reverse transcription polymerase chain reaction (RT-qPCR) Ct values, offering valuable information of the viral load and, therefore, presenting an important advantage over nonquantitative readouts.
format Online
Article
Text
id pubmed-7839157
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-78391572021-01-27 Machine Learning-Driven and Smartphone-Based Fluorescence Detection for CRISPR Diagnostic of SARS-CoV-2 Samacoits, Aubin Nimsamer, Pattaraporn Mayuramart, Oraphan Chantaravisoot, Naphat Sitthi-amorn, Pitchaya Nakhakes, Chajchawan Luangkamchorn, Lumrung Tongcham, Phongsakhon Zahm, Ugo Suphanpayak, Suchada Padungwattanachoke, Natta Leelarthaphin, Nutcha Huayhongthong, Hathaichanok Pisitkun, Trairak Payungporn, Sunchai Hannanta-anan, Pimkhuan ACS Omega [Image: see text] Rapid, accurate, and low-cost detection of SARS-CoV-2 is crucial to contain the transmission of COVID-19. Here, we present a cost-effective smartphone-based device coupled with machine learning-driven software that evaluates the fluorescence signals of the CRISPR diagnostic of SARS-CoV-2. The device consists of a three-dimensional (3D)-printed housing and low-cost optic components that allow excitation of fluorescent reporters and selective transmission of the fluorescence emission to a smartphone. Custom software equipped with a binary classification model has been developed to quantify the acquired fluorescence images and determine the presence of the virus. Our detection system has a limit of detection (LoD) of 6.25 RNA copies/μL on laboratory samples and produces a test accuracy of 95% and sensitivity of 97% on 96 nasopharyngeal swab samples with transmissible viral loads. Our quantitative fluorescence score shows a strong correlation with the quantitative reverse transcription polymerase chain reaction (RT-qPCR) Ct values, offering valuable information of the viral load and, therefore, presenting an important advantage over nonquantitative readouts. American Chemical Society 2021-01-20 /pmc/articles/PMC7839157/ /pubmed/33553890 http://dx.doi.org/10.1021/acsomega.0c04929 Text en © 2021 The Authors. Published by American Chemical Society This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License (http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html) , which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes.
spellingShingle Samacoits, Aubin
Nimsamer, Pattaraporn
Mayuramart, Oraphan
Chantaravisoot, Naphat
Sitthi-amorn, Pitchaya
Nakhakes, Chajchawan
Luangkamchorn, Lumrung
Tongcham, Phongsakhon
Zahm, Ugo
Suphanpayak, Suchada
Padungwattanachoke, Natta
Leelarthaphin, Nutcha
Huayhongthong, Hathaichanok
Pisitkun, Trairak
Payungporn, Sunchai
Hannanta-anan, Pimkhuan
Machine Learning-Driven and Smartphone-Based Fluorescence Detection for CRISPR Diagnostic of SARS-CoV-2
title Machine Learning-Driven and Smartphone-Based Fluorescence Detection for CRISPR Diagnostic of SARS-CoV-2
title_full Machine Learning-Driven and Smartphone-Based Fluorescence Detection for CRISPR Diagnostic of SARS-CoV-2
title_fullStr Machine Learning-Driven and Smartphone-Based Fluorescence Detection for CRISPR Diagnostic of SARS-CoV-2
title_full_unstemmed Machine Learning-Driven and Smartphone-Based Fluorescence Detection for CRISPR Diagnostic of SARS-CoV-2
title_short Machine Learning-Driven and Smartphone-Based Fluorescence Detection for CRISPR Diagnostic of SARS-CoV-2
title_sort machine learning-driven and smartphone-based fluorescence detection for crispr diagnostic of sars-cov-2
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7839157/
https://www.ncbi.nlm.nih.gov/pubmed/33553890
http://dx.doi.org/10.1021/acsomega.0c04929
work_keys_str_mv AT samacoitsaubin machinelearningdrivenandsmartphonebasedfluorescencedetectionforcrisprdiagnosticofsarscov2
AT nimsamerpattaraporn machinelearningdrivenandsmartphonebasedfluorescencedetectionforcrisprdiagnosticofsarscov2
AT mayuramartoraphan machinelearningdrivenandsmartphonebasedfluorescencedetectionforcrisprdiagnosticofsarscov2
AT chantaravisootnaphat machinelearningdrivenandsmartphonebasedfluorescencedetectionforcrisprdiagnosticofsarscov2
AT sitthiamornpitchaya machinelearningdrivenandsmartphonebasedfluorescencedetectionforcrisprdiagnosticofsarscov2
AT nakhakeschajchawan machinelearningdrivenandsmartphonebasedfluorescencedetectionforcrisprdiagnosticofsarscov2
AT luangkamchornlumrung machinelearningdrivenandsmartphonebasedfluorescencedetectionforcrisprdiagnosticofsarscov2
AT tongchamphongsakhon machinelearningdrivenandsmartphonebasedfluorescencedetectionforcrisprdiagnosticofsarscov2
AT zahmugo machinelearningdrivenandsmartphonebasedfluorescencedetectionforcrisprdiagnosticofsarscov2
AT suphanpayaksuchada machinelearningdrivenandsmartphonebasedfluorescencedetectionforcrisprdiagnosticofsarscov2
AT padungwattanachokenatta machinelearningdrivenandsmartphonebasedfluorescencedetectionforcrisprdiagnosticofsarscov2
AT leelarthaphinnutcha machinelearningdrivenandsmartphonebasedfluorescencedetectionforcrisprdiagnosticofsarscov2
AT huayhongthonghathaichanok machinelearningdrivenandsmartphonebasedfluorescencedetectionforcrisprdiagnosticofsarscov2
AT pisitkuntrairak machinelearningdrivenandsmartphonebasedfluorescencedetectionforcrisprdiagnosticofsarscov2
AT payungpornsunchai machinelearningdrivenandsmartphonebasedfluorescencedetectionforcrisprdiagnosticofsarscov2
AT hannantaananpimkhuan machinelearningdrivenandsmartphonebasedfluorescencedetectionforcrisprdiagnosticofsarscov2