Cargando…
Diagnostic, Prognostic, and Therapeutic Use of Radiopharmaceuticals in the Context of SARS-CoV-2
[Image: see text] The coronavirus disease 2019 (COVID-19) outbreak has devastated the healthcare systems and economies of over 200 countries in just a few months. The etiological agent of COVID-19, SARS-CoV-2, is a highly contagious virus that can be transmitted by asymptomatic and symptomatic carri...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7839413/ https://www.ncbi.nlm.nih.gov/pubmed/33615159 http://dx.doi.org/10.1021/acsptsci.0c00186 |
Sumario: | [Image: see text] The coronavirus disease 2019 (COVID-19) outbreak has devastated the healthcare systems and economies of over 200 countries in just a few months. The etiological agent of COVID-19, SARS-CoV-2, is a highly contagious virus that can be transmitted by asymptomatic and symptomatic carriers alike. While in vitro testing techniques have allowed for population-wide screening, prognostic tools are required to assess the disease severity and therapeutic response, contributing to improve the patient clinical outcomes. Moreover, no specific antiviral against COVID-19 exists at the time of publication, severely limiting treatment against the infection. Hence, there is an urgent clinical need for innovative therapeutic strategies that may contribute to manage the COVID-19 outbreak and prevent future pandemics. Herein, we critically examine recent diagnostic, prognostic, and therapeutic advancements for COVID-19 in the field of radiopharmaceuticals. First, we summarize the gold standard techniques used to diagnose COVID-19, including in vitro assays and imaging techniques, and then discuss how radionuclide-based nuclear imaging provides complementary information for prognosis and treatment management of infected patients. Second, we introduce new emerging types of radiotherapies that employ radioimmunoconjugates, which have shown selective cytotoxic response in oncological studies, and critically analyze how these compounds could be used as therapeutic agents against SARS-CoV-2. Finally, this Perspective further discusses the emerging applications of radionuclides to study the behavior of pulmonary SARS-CoV-2 aerosol particles. |
---|