Cargando…

Configurational Entropy Driven High‐Pressure Behaviour of a Flexible Metal–Organic Framework (MOF)

Flexible metal–organic frameworks (MOFs) show large structural flexibility as a function of temperature or (gas)pressure variation, a fascinating property of high technological and scientific relevance. The targeted design of flexible MOFs demands control over the macroscopic thermodynamics as deter...

Descripción completa

Detalles Bibliográficos
Autores principales: Vervoorts, Pia, Keupp, Julian, Schneemann, Andreas, Hobday, Claire L., Daisenberger, Dominik, Fischer, Roland A., Schmid, Rochus, Kieslich, Gregor
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7839482/
https://www.ncbi.nlm.nih.gov/pubmed/32926541
http://dx.doi.org/10.1002/anie.202011004
_version_ 1783643390277058560
author Vervoorts, Pia
Keupp, Julian
Schneemann, Andreas
Hobday, Claire L.
Daisenberger, Dominik
Fischer, Roland A.
Schmid, Rochus
Kieslich, Gregor
author_facet Vervoorts, Pia
Keupp, Julian
Schneemann, Andreas
Hobday, Claire L.
Daisenberger, Dominik
Fischer, Roland A.
Schmid, Rochus
Kieslich, Gregor
author_sort Vervoorts, Pia
collection PubMed
description Flexible metal–organic frameworks (MOFs) show large structural flexibility as a function of temperature or (gas)pressure variation, a fascinating property of high technological and scientific relevance. The targeted design of flexible MOFs demands control over the macroscopic thermodynamics as determined by microscopic chemical interactions and remains an open challenge. Herein we apply high‐pressure powder X‐ray diffraction and molecular dynamics simulations to gain insight into the microscopic chemical factors that determine the high‐pressure macroscopic thermodynamics of two flexible pillared‐layer MOFs. For the first time we identify configurational entropy that originates from side‐chain modifications of the linker as the key factor determining the thermodynamics in a flexible MOF. The study shows that configurational entropy is an important yet largely overlooked parameter, providing an intriguing perspective of how to chemically access the underlying free energy landscape in MOFs.
format Online
Article
Text
id pubmed-7839482
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-78394822021-02-01 Configurational Entropy Driven High‐Pressure Behaviour of a Flexible Metal–Organic Framework (MOF) Vervoorts, Pia Keupp, Julian Schneemann, Andreas Hobday, Claire L. Daisenberger, Dominik Fischer, Roland A. Schmid, Rochus Kieslich, Gregor Angew Chem Int Ed Engl Research Articles Flexible metal–organic frameworks (MOFs) show large structural flexibility as a function of temperature or (gas)pressure variation, a fascinating property of high technological and scientific relevance. The targeted design of flexible MOFs demands control over the macroscopic thermodynamics as determined by microscopic chemical interactions and remains an open challenge. Herein we apply high‐pressure powder X‐ray diffraction and molecular dynamics simulations to gain insight into the microscopic chemical factors that determine the high‐pressure macroscopic thermodynamics of two flexible pillared‐layer MOFs. For the first time we identify configurational entropy that originates from side‐chain modifications of the linker as the key factor determining the thermodynamics in a flexible MOF. The study shows that configurational entropy is an important yet largely overlooked parameter, providing an intriguing perspective of how to chemically access the underlying free energy landscape in MOFs. John Wiley and Sons Inc. 2020-11-12 2021-01-11 /pmc/articles/PMC7839482/ /pubmed/32926541 http://dx.doi.org/10.1002/anie.202011004 Text en © 2020 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Vervoorts, Pia
Keupp, Julian
Schneemann, Andreas
Hobday, Claire L.
Daisenberger, Dominik
Fischer, Roland A.
Schmid, Rochus
Kieslich, Gregor
Configurational Entropy Driven High‐Pressure Behaviour of a Flexible Metal–Organic Framework (MOF)
title Configurational Entropy Driven High‐Pressure Behaviour of a Flexible Metal–Organic Framework (MOF)
title_full Configurational Entropy Driven High‐Pressure Behaviour of a Flexible Metal–Organic Framework (MOF)
title_fullStr Configurational Entropy Driven High‐Pressure Behaviour of a Flexible Metal–Organic Framework (MOF)
title_full_unstemmed Configurational Entropy Driven High‐Pressure Behaviour of a Flexible Metal–Organic Framework (MOF)
title_short Configurational Entropy Driven High‐Pressure Behaviour of a Flexible Metal–Organic Framework (MOF)
title_sort configurational entropy driven high‐pressure behaviour of a flexible metal–organic framework (mof)
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7839482/
https://www.ncbi.nlm.nih.gov/pubmed/32926541
http://dx.doi.org/10.1002/anie.202011004
work_keys_str_mv AT vervoortspia configurationalentropydrivenhighpressurebehaviourofaflexiblemetalorganicframeworkmof
AT keuppjulian configurationalentropydrivenhighpressurebehaviourofaflexiblemetalorganicframeworkmof
AT schneemannandreas configurationalentropydrivenhighpressurebehaviourofaflexiblemetalorganicframeworkmof
AT hobdayclairel configurationalentropydrivenhighpressurebehaviourofaflexiblemetalorganicframeworkmof
AT daisenbergerdominik configurationalentropydrivenhighpressurebehaviourofaflexiblemetalorganicframeworkmof
AT fischerrolanda configurationalentropydrivenhighpressurebehaviourofaflexiblemetalorganicframeworkmof
AT schmidrochus configurationalentropydrivenhighpressurebehaviourofaflexiblemetalorganicframeworkmof
AT kieslichgregor configurationalentropydrivenhighpressurebehaviourofaflexiblemetalorganicframeworkmof