Cargando…
Ultrasound image analysis using deep neural networks for discriminating between benign and malignant ovarian tumors: comparison with expert subjective assessment
OBJECTIVES: To develop and test the performance of computerized ultrasound image analysis using deep neural networks (DNNs) in discriminating between benign and malignant ovarian tumors and to compare its diagnostic accuracy with that of subjective assessment (SA) by an ultrasound expert. METHODS: W...
Autores principales: | Christiansen, F., Epstein, E. L., Smedberg, E., Åkerlund, M., Smith, K., Epstein, E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Ltd.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7839489/ https://www.ncbi.nlm.nih.gov/pubmed/33142359 http://dx.doi.org/10.1002/uog.23530 |
Ejemplares similares
-
Application of Deep Convolutional Neural Networks for Discriminating Benign, Borderline, and Malignant Serous Ovarian Tumors From Ultrasound Images
por: Wang, Huiquan, et al.
Publicado: (2021) -
The Comparison of Three Predictive Indexes to Discriminate Malignant Ovarian Tumors from Benign Ovarian Endometrioma: The Characteristics and Efficacy
por: Yamanaka, Shoichiro, et al.
Publicado: (2022) -
Discriminative deep learning based benignity/malignancy diagnosis of dermatologic ultrasound skin lesions with pretrained artificial intelligence architecture
por: Laverde‐Saad, Alexandra, et al.
Publicado: (2021) -
MR imaging in discriminating between benign and malignant paediatric ovarian masses: a systematic review
por: van Nimwegen, Lotte W. E., et al.
Publicado: (2019) -
Evaluation of the Diagnostic Value of the Ultrasound ADNEX Model for Benign and Malignant Ovarian Tumors
por: Peng, Xiao-Shan, et al.
Publicado: (2021)