Cargando…
A Giant [8+12] Boronic Ester Cage with 48 Terminal Alkene Units in the Periphery for Postsynthetic Alkene Metathesis
Dynamic covalent chemistry (DCC) is a powerful synthetic tool to construct large defined molecules in one step from rather simple precursors. The advantage of the intrinsic dynamics of the applied reversible reaction steps is a self‐correction under the chosen conditions, to achieve high yields of t...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7839526/ https://www.ncbi.nlm.nih.gov/pubmed/32840913 http://dx.doi.org/10.1002/chem.202003675 |
Sumario: | Dynamic covalent chemistry (DCC) is a powerful synthetic tool to construct large defined molecules in one step from rather simple precursors. The advantage of the intrinsic dynamics of the applied reversible reaction steps is a self‐correction under the chosen conditions, to achieve high yields of the target compound. To date, only a few examples are known, in which DCC was used to build up a molecular defined but larger product that was chemically transferred to a more stable congener in a second (irreversible) step. Here, we present a nanometer‐sized [8+12] boronic ester cage containing 48 peripheral terminal alkene units which allows to put a hydrocarbon exoskeleton around the cage via alkene metathesis. |
---|