Cargando…
Employing computational linguistics techniques to identify limited patient health literacy: Findings from the ECLIPPSE study
OBJECTIVE: To develop novel, scalable, and valid literacy profiles for identifying limited health literacy patients by harnessing natural language processing. DATA SOURCE: With respect to the linguistic content, we analyzed 283 216 secure messages sent by 6941 diabetes patients to physicians within...
Autores principales: | Schillinger, Dean, Balyan, Renu, Crossley, Scott A., McNamara, Danielle S., Liu, Jennifer Y., Karter, Andrew J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7839650/ https://www.ncbi.nlm.nih.gov/pubmed/32966630 http://dx.doi.org/10.1111/1475-6773.13560 |
Ejemplares similares
-
Using natural language processing and machine learning to classify health literacy from secure messages: The ECLIPPSE study
por: Balyan, Renu, et al.
Publicado: (2019) -
The Next Frontier in Communication and the ECLIPPSE Study: Bridging the Linguistic Divide in Secure Messaging
por: Schillinger, Dean, et al.
Publicado: (2017) -
Precision communication: Physicians’ linguistic adaptation to patients’ health literacy
por: Schillinger, Dean, et al.
Publicado: (2021) -
4014 Results of a Formative Evaluation of the Cardiopulmonary Vascular Biology (CPVB) Center of Biomedical Research Excellence (COBRE)
por: Kimberly, Judy, et al.
Publicado: (2020) -
Hypoglycemia is More Common Among Type 2 Diabetes Patients with Limited Health Literacy: The Diabetes Study of Northern California (DISTANCE)
por: Sarkar, Urmimala, et al.
Publicado: (2010)