Cargando…

Enzymatic Noncovalent Synthesis for Mitochondrial Genetic Engineering of Cancer Cells

Since mitochondria contribute to tumorigenesis and drug resistance in cancer, mitochondrial genetic engineering promises a new direction for cancer therapy. Here, we report the use of the perimitochondrial enzymatic noncovalent synthesis (ENS) of peptides for delivering genes selectively into the mi...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Hongjian, Lin, Xinyi, Wu, Difei, Wang, Jiaqing, Guo, Jiaqi, Green, Douglas R., Zhang, Hongwei, Xu, Bing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7839975/
https://www.ncbi.nlm.nih.gov/pubmed/33511360
http://dx.doi.org/10.1016/j.xcrp.2020.100270
_version_ 1783643484911042560
author He, Hongjian
Lin, Xinyi
Wu, Difei
Wang, Jiaqing
Guo, Jiaqi
Green, Douglas R.
Zhang, Hongwei
Xu, Bing
author_facet He, Hongjian
Lin, Xinyi
Wu, Difei
Wang, Jiaqing
Guo, Jiaqi
Green, Douglas R.
Zhang, Hongwei
Xu, Bing
author_sort He, Hongjian
collection PubMed
description Since mitochondria contribute to tumorigenesis and drug resistance in cancer, mitochondrial genetic engineering promises a new direction for cancer therapy. Here, we report the use of the perimitochondrial enzymatic noncovalent synthesis (ENS) of peptides for delivering genes selectively into the mitochondria of cancer cells for mitochondrial genetic engineering. Specifically, the micelles of peptides bind to the voltage-dependent anion channel (VDAC) on mitochondria for the proteolysis by enterokinase (ENTK), generating perimitochondrial nanofibers in cancer cells. This process, facilitating selective delivery of nucleic acid or gene vectors into mitochondria of cancer cells, enables the mitochondrial transgene expression of CRISPR/Cas9, FUNDC1, p53, and fluorescent proteins. Mechanistic investigation indicates that the interaction of the peptide assemblies with the VDAC and mitochondrial membrane potential are necessary for mitochondria targeting. This local enzymatic control of intermolecular noncovalent interactions enables selective mitochondrial genetic engineering, thus providing a strategy for targeting cancer cells.
format Online
Article
Text
id pubmed-7839975
institution National Center for Biotechnology Information
language English
publishDate 2020
record_format MEDLINE/PubMed
spelling pubmed-78399752021-01-27 Enzymatic Noncovalent Synthesis for Mitochondrial Genetic Engineering of Cancer Cells He, Hongjian Lin, Xinyi Wu, Difei Wang, Jiaqing Guo, Jiaqi Green, Douglas R. Zhang, Hongwei Xu, Bing Cell Rep Phys Sci Article Since mitochondria contribute to tumorigenesis and drug resistance in cancer, mitochondrial genetic engineering promises a new direction for cancer therapy. Here, we report the use of the perimitochondrial enzymatic noncovalent synthesis (ENS) of peptides for delivering genes selectively into the mitochondria of cancer cells for mitochondrial genetic engineering. Specifically, the micelles of peptides bind to the voltage-dependent anion channel (VDAC) on mitochondria for the proteolysis by enterokinase (ENTK), generating perimitochondrial nanofibers in cancer cells. This process, facilitating selective delivery of nucleic acid or gene vectors into mitochondria of cancer cells, enables the mitochondrial transgene expression of CRISPR/Cas9, FUNDC1, p53, and fluorescent proteins. Mechanistic investigation indicates that the interaction of the peptide assemblies with the VDAC and mitochondrial membrane potential are necessary for mitochondria targeting. This local enzymatic control of intermolecular noncovalent interactions enables selective mitochondrial genetic engineering, thus providing a strategy for targeting cancer cells. 2020-12-09 2020-12-23 /pmc/articles/PMC7839975/ /pubmed/33511360 http://dx.doi.org/10.1016/j.xcrp.2020.100270 Text en This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
He, Hongjian
Lin, Xinyi
Wu, Difei
Wang, Jiaqing
Guo, Jiaqi
Green, Douglas R.
Zhang, Hongwei
Xu, Bing
Enzymatic Noncovalent Synthesis for Mitochondrial Genetic Engineering of Cancer Cells
title Enzymatic Noncovalent Synthesis for Mitochondrial Genetic Engineering of Cancer Cells
title_full Enzymatic Noncovalent Synthesis for Mitochondrial Genetic Engineering of Cancer Cells
title_fullStr Enzymatic Noncovalent Synthesis for Mitochondrial Genetic Engineering of Cancer Cells
title_full_unstemmed Enzymatic Noncovalent Synthesis for Mitochondrial Genetic Engineering of Cancer Cells
title_short Enzymatic Noncovalent Synthesis for Mitochondrial Genetic Engineering of Cancer Cells
title_sort enzymatic noncovalent synthesis for mitochondrial genetic engineering of cancer cells
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7839975/
https://www.ncbi.nlm.nih.gov/pubmed/33511360
http://dx.doi.org/10.1016/j.xcrp.2020.100270
work_keys_str_mv AT hehongjian enzymaticnoncovalentsynthesisformitochondrialgeneticengineeringofcancercells
AT linxinyi enzymaticnoncovalentsynthesisformitochondrialgeneticengineeringofcancercells
AT wudifei enzymaticnoncovalentsynthesisformitochondrialgeneticengineeringofcancercells
AT wangjiaqing enzymaticnoncovalentsynthesisformitochondrialgeneticengineeringofcancercells
AT guojiaqi enzymaticnoncovalentsynthesisformitochondrialgeneticengineeringofcancercells
AT greendouglasr enzymaticnoncovalentsynthesisformitochondrialgeneticengineeringofcancercells
AT zhanghongwei enzymaticnoncovalentsynthesisformitochondrialgeneticengineeringofcancercells
AT xubing enzymaticnoncovalentsynthesisformitochondrialgeneticengineeringofcancercells