Cargando…
Uniform patterns based area-efficient and accurate stochastic computing finite impulse response filter
Stochastic computing has recently gained attention due to its low hardware complexity and better fault tolerance against soft errors. However, stochastic computing based circuits suffer from different errors which affect the output accuracy of these circuits. In this paper, an accurate and area-effi...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7840030/ https://www.ncbi.nlm.nih.gov/pubmed/33503067 http://dx.doi.org/10.1371/journal.pone.0245943 |
Sumario: | Stochastic computing has recently gained attention due to its low hardware complexity and better fault tolerance against soft errors. However, stochastic computing based circuits suffer from different errors which affect the output accuracy of these circuits. In this paper, an accurate and area-efficient stochastic computing based digital finite impulse response filter is designed. In the proposed work, constant uniform patterns are used as stochastic numbers for the select lines of different MUXes in the filter and the error performance of filter is analysed. Based on the error performance, the combinations of these patterns are proposed for reducing the output error of stochastic computing based filters. The architectures for generating these uniform patterns are also proposed. Results show that the proposed design methodology has better error performance and comparable hardware complexity as compared to the state-of-the-art implementations. |
---|