Cargando…

Towards in vivo g-ratio mapping using MRI: Unifying myelin and diffusion imaging

BACKGROUND: The g-ratio, quantifying the comparative thickness of the myelin sheath encasing an axon, is a geometrical invariant that has high functional relevance because of its importance in determining neuronal conduction velocity. Advances in MRI data acquisition and signal modelling have put in...

Descripción completa

Detalles Bibliográficos
Autores principales: Mohammadi, Siawoosh, Callaghan, Martina F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier/North-Holland Biomedical Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7840525/
https://www.ncbi.nlm.nih.gov/pubmed/33129894
http://dx.doi.org/10.1016/j.jneumeth.2020.108990
_version_ 1783643590749061120
author Mohammadi, Siawoosh
Callaghan, Martina F.
author_facet Mohammadi, Siawoosh
Callaghan, Martina F.
author_sort Mohammadi, Siawoosh
collection PubMed
description BACKGROUND: The g-ratio, quantifying the comparative thickness of the myelin sheath encasing an axon, is a geometrical invariant that has high functional relevance because of its importance in determining neuronal conduction velocity. Advances in MRI data acquisition and signal modelling have put in vivo mapping of the g-ratio, across the entire white matter, within our reach. This capacity would greatly increase our knowledge of the nervous system: how it functions, and how it is impacted by disease. NEW METHOD: This is the second review on the topic of g-ratio mapping using MRI. RESULTS: This review summarizes the most recent developments in the field, while also providing methodological background pertinent to aggregate g-ratio weighted mapping, and discussing pitfalls associated with these approaches. COMPARISON WITH EXISTING METHODS: Using simulations based on recently published data, this review reveals caveats to the state-of-the-art calibration methods that have been used for in vivo g-ratio mapping. It highlights the need to estimate both the slope and offset of the relationship between these MRI-based markers and the true myelin volume fraction if we are really to achieve the goal of precise, high sensitivity g-ratio mapping in vivo. Other challenges discussed in this review further evidence the need for gold standard measurements of human brain tissue from ex vivo histology. CONCLUSIONS: We conclude that the quest to find the most appropriate MRI biomarkers to enable in vivo g-ratio mapping is ongoing, with the full potential of many novel techniques yet to be investigated.
format Online
Article
Text
id pubmed-7840525
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier/North-Holland Biomedical Press
record_format MEDLINE/PubMed
spelling pubmed-78405252021-02-01 Towards in vivo g-ratio mapping using MRI: Unifying myelin and diffusion imaging Mohammadi, Siawoosh Callaghan, Martina F. J Neurosci Methods Article BACKGROUND: The g-ratio, quantifying the comparative thickness of the myelin sheath encasing an axon, is a geometrical invariant that has high functional relevance because of its importance in determining neuronal conduction velocity. Advances in MRI data acquisition and signal modelling have put in vivo mapping of the g-ratio, across the entire white matter, within our reach. This capacity would greatly increase our knowledge of the nervous system: how it functions, and how it is impacted by disease. NEW METHOD: This is the second review on the topic of g-ratio mapping using MRI. RESULTS: This review summarizes the most recent developments in the field, while also providing methodological background pertinent to aggregate g-ratio weighted mapping, and discussing pitfalls associated with these approaches. COMPARISON WITH EXISTING METHODS: Using simulations based on recently published data, this review reveals caveats to the state-of-the-art calibration methods that have been used for in vivo g-ratio mapping. It highlights the need to estimate both the slope and offset of the relationship between these MRI-based markers and the true myelin volume fraction if we are really to achieve the goal of precise, high sensitivity g-ratio mapping in vivo. Other challenges discussed in this review further evidence the need for gold standard measurements of human brain tissue from ex vivo histology. CONCLUSIONS: We conclude that the quest to find the most appropriate MRI biomarkers to enable in vivo g-ratio mapping is ongoing, with the full potential of many novel techniques yet to be investigated. Elsevier/North-Holland Biomedical Press 2021-01-15 /pmc/articles/PMC7840525/ /pubmed/33129894 http://dx.doi.org/10.1016/j.jneumeth.2020.108990 Text en © 2020 The Author(s) http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Mohammadi, Siawoosh
Callaghan, Martina F.
Towards in vivo g-ratio mapping using MRI: Unifying myelin and diffusion imaging
title Towards in vivo g-ratio mapping using MRI: Unifying myelin and diffusion imaging
title_full Towards in vivo g-ratio mapping using MRI: Unifying myelin and diffusion imaging
title_fullStr Towards in vivo g-ratio mapping using MRI: Unifying myelin and diffusion imaging
title_full_unstemmed Towards in vivo g-ratio mapping using MRI: Unifying myelin and diffusion imaging
title_short Towards in vivo g-ratio mapping using MRI: Unifying myelin and diffusion imaging
title_sort towards in vivo g-ratio mapping using mri: unifying myelin and diffusion imaging
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7840525/
https://www.ncbi.nlm.nih.gov/pubmed/33129894
http://dx.doi.org/10.1016/j.jneumeth.2020.108990
work_keys_str_mv AT mohammadisiawoosh towardsinvivogratiomappingusingmriunifyingmyelinanddiffusionimaging
AT callaghanmartinaf towardsinvivogratiomappingusingmriunifyingmyelinanddiffusionimaging