Cargando…
Least squares and maximum likelihood estimation of sufficient reductions in regressions with matrix-valued predictors
We propose methods to estimate sufficient reductions in matrix-valued predictors for regression or classification. We assume that the first moment of the predictor matrix given the response can be decomposed into a row and column component via a Kronecker product structure. We obtain least squares a...
Autores principales: | Pfeiffer, Ruth M., Kapla, Daniel B., Bura, Efstathia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7840662/ https://www.ncbi.nlm.nih.gov/pubmed/33553594 http://dx.doi.org/10.1007/s41060-020-00228-y |
Ejemplares similares
-
Statistics lectures II: maximum likelihood and least squares theory
por: Hudson, Derek J
Publicado: (1964) -
Quasi-least squares regression
por: Shults, Justine, et al.
Publicado: (2014) -
Sparse partial least squares regression for simultaneous dimension reduction and variable selection
por: Chun, Hyonho, et al.
Publicado: (2010) -
Fast Dating Using Least-Squares Criteria and Algorithms
por: To, Thu-Hien, et al.
Publicado: (2016) -
A Sum-of-Squares and Semidefinite Programming Approach for Maximum Likelihood DOA Estimation
por: Cai, Shu, et al.
Publicado: (2016)