Cargando…
Classification of colorectal tissue images from high throughput tissue microarrays by ensemble deep learning methods
Tissue microarray (TMA) core images are a treasure trove for artificial intelligence applications. However, a common problem of TMAs is multiple sectioning, which can change the content of the intended tissue core and requires re-labelling. Here, we investigate different ensemble methods for colorec...
Autores principales: | Nguyen, Huu-Giao, Blank, Annika, Dawson, Heather E., Lugli, Alessandro, Zlobec, Inti |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7840737/ https://www.ncbi.nlm.nih.gov/pubmed/33504830 http://dx.doi.org/10.1038/s41598-021-81352-y |
Ejemplares similares
-
Image-based assessment of extracellular mucin-to-tumor area predicts consensus molecular subtypes (CMS) in colorectal cancer
por: Nguyen, Huu-Giao, et al.
Publicado: (2021) -
Tumor Heterogeneity in Primary Colorectal Cancer and Corresponding Metastases. Does the Apple Fall Far From the Tree?
por: Blank, Annika, et al.
Publicado: (2018) -
Evaluation of Tumor Budding in Primary Colorectal Cancer and Corresponding Liver Metastases Based on H&E and Pancytokeratin Staining
por: Blank, Annika, et al.
Publicado: (2019) -
A Next-generation Tissue Microarray (ngTMA) Protocol for Biomarker Studies
por: Zlobec, Inti, et al.
Publicado: (2014) -
Impact of scanner variability on lymph node segmentation in computational pathology
por: Khan, Amjad, et al.
Publicado: (2022)