Cargando…

Thin-film synthesis of superconductor-on-insulator A15 vanadium silicide

We present a new method for thin-film synthesis of the superconducting A15 phase of vanadium silicide with critical temperature higher than 13 K. Interdiffusion between a metallic vanadium film and the underlying silicon device layer in a silicon-on-insulator substrate, at temperatures between 650 a...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Wenrui, Bollinger, Anthony T., Li, Ruoshui, Kisslinger, Kim, Tong, Xiao, Liu, Mingzhao, Black, Charles T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7840772/
https://www.ncbi.nlm.nih.gov/pubmed/33504921
http://dx.doi.org/10.1038/s41598-021-82046-1
Descripción
Sumario:We present a new method for thin-film synthesis of the superconducting A15 phase of vanadium silicide with critical temperature higher than 13 K. Interdiffusion between a metallic vanadium film and the underlying silicon device layer in a silicon-on-insulator substrate, at temperatures between 650 and 750 °C, favors formation of the vanadium-rich A15 phase by limiting the supply of available silicon for the reaction. Energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction verify the stoichiometry and structure of the synthesized thin films. We measure superconducting critical currents of more than 10(6) amperes per square centimeter at low temperature in micron-scale bars fabricated from the material, and an upper critical magnetic field of 20 T, from which we deduce a superconducting coherence length of 4 nm, consistent with previously reported bulk values. The relatively high critical temperature of A15 vanadium silicide is an appealing property for use in silicon-compatible quantum devices and circuits.