Cargando…
Integrating deep learning CT-scan model, biological and clinical variables to predict severity of COVID-19 patients
The SARS-COV-2 pandemic has put pressure on intensive care units, so that identifying predictors of disease severity is a priority. We collect 58 clinical and biological variables, and chest CT scan data, from 1003 coronavirus-infected patients from two French hospitals. We train a deep learning mod...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7840774/ https://www.ncbi.nlm.nih.gov/pubmed/33504775 http://dx.doi.org/10.1038/s41467-020-20657-4 |
_version_ | 1783643649639186432 |
---|---|
author | Lassau, Nathalie Ammari, Samy Chouzenoux, Emilie Gortais, Hugo Herent, Paul Devilder, Matthieu Soliman, Samer Meyrignac, Olivier Talabard, Marie-Pauline Lamarque, Jean-Philippe Dubois, Remy Loiseau, Nicolas Trichelair, Paul Bendjebbar, Etienne Garcia, Gabriel Balleyguier, Corinne Merad, Mansouria Stoclin, Annabelle Jegou, Simon Griscelli, Franck Tetelboum, Nicolas Li, Yingping Verma, Sagar Terris, Matthieu Dardouri, Tasnim Gupta, Kavya Neacsu, Ana Chemouni, Frank Sefta, Meriem Jehanno, Paul Bousaid, Imad Boursin, Yannick Planchet, Emmanuel Azoulay, Mikael Dachary, Jocelyn Brulport, Fabien Gonzalez, Adrian Dehaene, Olivier Schiratti, Jean-Baptiste Schutte, Kathryn Pesquet, Jean-Christophe Talbot, Hugues Pronier, Elodie Wainrib, Gilles Clozel, Thomas Barlesi, Fabrice Bellin, Marie-France Blum, Michael G. B. |
author_facet | Lassau, Nathalie Ammari, Samy Chouzenoux, Emilie Gortais, Hugo Herent, Paul Devilder, Matthieu Soliman, Samer Meyrignac, Olivier Talabard, Marie-Pauline Lamarque, Jean-Philippe Dubois, Remy Loiseau, Nicolas Trichelair, Paul Bendjebbar, Etienne Garcia, Gabriel Balleyguier, Corinne Merad, Mansouria Stoclin, Annabelle Jegou, Simon Griscelli, Franck Tetelboum, Nicolas Li, Yingping Verma, Sagar Terris, Matthieu Dardouri, Tasnim Gupta, Kavya Neacsu, Ana Chemouni, Frank Sefta, Meriem Jehanno, Paul Bousaid, Imad Boursin, Yannick Planchet, Emmanuel Azoulay, Mikael Dachary, Jocelyn Brulport, Fabien Gonzalez, Adrian Dehaene, Olivier Schiratti, Jean-Baptiste Schutte, Kathryn Pesquet, Jean-Christophe Talbot, Hugues Pronier, Elodie Wainrib, Gilles Clozel, Thomas Barlesi, Fabrice Bellin, Marie-France Blum, Michael G. B. |
author_sort | Lassau, Nathalie |
collection | PubMed |
description | The SARS-COV-2 pandemic has put pressure on intensive care units, so that identifying predictors of disease severity is a priority. We collect 58 clinical and biological variables, and chest CT scan data, from 1003 coronavirus-infected patients from two French hospitals. We train a deep learning model based on CT scans to predict severity. We then construct the multimodal AI-severity score that includes 5 clinical and biological variables (age, sex, oxygenation, urea, platelet) in addition to the deep learning model. We show that neural network analysis of CT-scans brings unique prognosis information, although it is correlated with other markers of severity (oxygenation, LDH, and CRP) explaining the measurable but limited 0.03 increase of AUC obtained when adding CT-scan information to clinical variables. Here, we show that when comparing AI-severity with 11 existing severity scores, we find significantly improved prognosis performance; AI-severity can therefore rapidly become a reference scoring approach. |
format | Online Article Text |
id | pubmed-7840774 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-78407742021-01-29 Integrating deep learning CT-scan model, biological and clinical variables to predict severity of COVID-19 patients Lassau, Nathalie Ammari, Samy Chouzenoux, Emilie Gortais, Hugo Herent, Paul Devilder, Matthieu Soliman, Samer Meyrignac, Olivier Talabard, Marie-Pauline Lamarque, Jean-Philippe Dubois, Remy Loiseau, Nicolas Trichelair, Paul Bendjebbar, Etienne Garcia, Gabriel Balleyguier, Corinne Merad, Mansouria Stoclin, Annabelle Jegou, Simon Griscelli, Franck Tetelboum, Nicolas Li, Yingping Verma, Sagar Terris, Matthieu Dardouri, Tasnim Gupta, Kavya Neacsu, Ana Chemouni, Frank Sefta, Meriem Jehanno, Paul Bousaid, Imad Boursin, Yannick Planchet, Emmanuel Azoulay, Mikael Dachary, Jocelyn Brulport, Fabien Gonzalez, Adrian Dehaene, Olivier Schiratti, Jean-Baptiste Schutte, Kathryn Pesquet, Jean-Christophe Talbot, Hugues Pronier, Elodie Wainrib, Gilles Clozel, Thomas Barlesi, Fabrice Bellin, Marie-France Blum, Michael G. B. Nat Commun Article The SARS-COV-2 pandemic has put pressure on intensive care units, so that identifying predictors of disease severity is a priority. We collect 58 clinical and biological variables, and chest CT scan data, from 1003 coronavirus-infected patients from two French hospitals. We train a deep learning model based on CT scans to predict severity. We then construct the multimodal AI-severity score that includes 5 clinical and biological variables (age, sex, oxygenation, urea, platelet) in addition to the deep learning model. We show that neural network analysis of CT-scans brings unique prognosis information, although it is correlated with other markers of severity (oxygenation, LDH, and CRP) explaining the measurable but limited 0.03 increase of AUC obtained when adding CT-scan information to clinical variables. Here, we show that when comparing AI-severity with 11 existing severity scores, we find significantly improved prognosis performance; AI-severity can therefore rapidly become a reference scoring approach. Nature Publishing Group UK 2021-01-27 /pmc/articles/PMC7840774/ /pubmed/33504775 http://dx.doi.org/10.1038/s41467-020-20657-4 Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Lassau, Nathalie Ammari, Samy Chouzenoux, Emilie Gortais, Hugo Herent, Paul Devilder, Matthieu Soliman, Samer Meyrignac, Olivier Talabard, Marie-Pauline Lamarque, Jean-Philippe Dubois, Remy Loiseau, Nicolas Trichelair, Paul Bendjebbar, Etienne Garcia, Gabriel Balleyguier, Corinne Merad, Mansouria Stoclin, Annabelle Jegou, Simon Griscelli, Franck Tetelboum, Nicolas Li, Yingping Verma, Sagar Terris, Matthieu Dardouri, Tasnim Gupta, Kavya Neacsu, Ana Chemouni, Frank Sefta, Meriem Jehanno, Paul Bousaid, Imad Boursin, Yannick Planchet, Emmanuel Azoulay, Mikael Dachary, Jocelyn Brulport, Fabien Gonzalez, Adrian Dehaene, Olivier Schiratti, Jean-Baptiste Schutte, Kathryn Pesquet, Jean-Christophe Talbot, Hugues Pronier, Elodie Wainrib, Gilles Clozel, Thomas Barlesi, Fabrice Bellin, Marie-France Blum, Michael G. B. Integrating deep learning CT-scan model, biological and clinical variables to predict severity of COVID-19 patients |
title | Integrating deep learning CT-scan model, biological and clinical variables to predict severity of COVID-19 patients |
title_full | Integrating deep learning CT-scan model, biological and clinical variables to predict severity of COVID-19 patients |
title_fullStr | Integrating deep learning CT-scan model, biological and clinical variables to predict severity of COVID-19 patients |
title_full_unstemmed | Integrating deep learning CT-scan model, biological and clinical variables to predict severity of COVID-19 patients |
title_short | Integrating deep learning CT-scan model, biological and clinical variables to predict severity of COVID-19 patients |
title_sort | integrating deep learning ct-scan model, biological and clinical variables to predict severity of covid-19 patients |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7840774/ https://www.ncbi.nlm.nih.gov/pubmed/33504775 http://dx.doi.org/10.1038/s41467-020-20657-4 |
work_keys_str_mv | AT lassaunathalie integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients AT ammarisamy integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients AT chouzenouxemilie integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients AT gortaishugo integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients AT herentpaul integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients AT devildermatthieu integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients AT solimansamer integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients AT meyrignacolivier integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients AT talabardmariepauline integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients AT lamarquejeanphilippe integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients AT duboisremy integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients AT loiseaunicolas integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients AT trichelairpaul integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients AT bendjebbaretienne integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients AT garciagabriel integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients AT balleyguiercorinne integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients AT meradmansouria integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients AT stoclinannabelle integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients AT jegousimon integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients AT griscellifranck integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients AT tetelboumnicolas integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients AT liyingping integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients AT vermasagar integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients AT terrismatthieu integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients AT dardouritasnim integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients AT guptakavya integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients AT neacsuana integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients AT chemounifrank integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients AT seftameriem integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients AT jehannopaul integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients AT bousaidimad integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients AT boursinyannick integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients AT planchetemmanuel integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients AT azoulaymikael integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients AT dacharyjocelyn integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients AT brulportfabien integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients AT gonzalezadrian integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients AT dehaeneolivier integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients AT schirattijeanbaptiste integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients AT schuttekathryn integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients AT pesquetjeanchristophe integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients AT talbothugues integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients AT pronierelodie integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients AT wainribgilles integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients AT clozelthomas integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients AT barlesifabrice integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients AT bellinmariefrance integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients AT blummichaelgb integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients |