Cargando…

Integrating deep learning CT-scan model, biological and clinical variables to predict severity of COVID-19 patients

The SARS-COV-2 pandemic has put pressure on intensive care units, so that identifying predictors of disease severity is a priority. We collect 58 clinical and biological variables, and chest CT scan data, from 1003 coronavirus-infected patients from two French hospitals. We train a deep learning mod...

Descripción completa

Detalles Bibliográficos
Autores principales: Lassau, Nathalie, Ammari, Samy, Chouzenoux, Emilie, Gortais, Hugo, Herent, Paul, Devilder, Matthieu, Soliman, Samer, Meyrignac, Olivier, Talabard, Marie-Pauline, Lamarque, Jean-Philippe, Dubois, Remy, Loiseau, Nicolas, Trichelair, Paul, Bendjebbar, Etienne, Garcia, Gabriel, Balleyguier, Corinne, Merad, Mansouria, Stoclin, Annabelle, Jegou, Simon, Griscelli, Franck, Tetelboum, Nicolas, Li, Yingping, Verma, Sagar, Terris, Matthieu, Dardouri, Tasnim, Gupta, Kavya, Neacsu, Ana, Chemouni, Frank, Sefta, Meriem, Jehanno, Paul, Bousaid, Imad, Boursin, Yannick, Planchet, Emmanuel, Azoulay, Mikael, Dachary, Jocelyn, Brulport, Fabien, Gonzalez, Adrian, Dehaene, Olivier, Schiratti, Jean-Baptiste, Schutte, Kathryn, Pesquet, Jean-Christophe, Talbot, Hugues, Pronier, Elodie, Wainrib, Gilles, Clozel, Thomas, Barlesi, Fabrice, Bellin, Marie-France, Blum, Michael G. B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7840774/
https://www.ncbi.nlm.nih.gov/pubmed/33504775
http://dx.doi.org/10.1038/s41467-020-20657-4
_version_ 1783643649639186432
author Lassau, Nathalie
Ammari, Samy
Chouzenoux, Emilie
Gortais, Hugo
Herent, Paul
Devilder, Matthieu
Soliman, Samer
Meyrignac, Olivier
Talabard, Marie-Pauline
Lamarque, Jean-Philippe
Dubois, Remy
Loiseau, Nicolas
Trichelair, Paul
Bendjebbar, Etienne
Garcia, Gabriel
Balleyguier, Corinne
Merad, Mansouria
Stoclin, Annabelle
Jegou, Simon
Griscelli, Franck
Tetelboum, Nicolas
Li, Yingping
Verma, Sagar
Terris, Matthieu
Dardouri, Tasnim
Gupta, Kavya
Neacsu, Ana
Chemouni, Frank
Sefta, Meriem
Jehanno, Paul
Bousaid, Imad
Boursin, Yannick
Planchet, Emmanuel
Azoulay, Mikael
Dachary, Jocelyn
Brulport, Fabien
Gonzalez, Adrian
Dehaene, Olivier
Schiratti, Jean-Baptiste
Schutte, Kathryn
Pesquet, Jean-Christophe
Talbot, Hugues
Pronier, Elodie
Wainrib, Gilles
Clozel, Thomas
Barlesi, Fabrice
Bellin, Marie-France
Blum, Michael G. B.
author_facet Lassau, Nathalie
Ammari, Samy
Chouzenoux, Emilie
Gortais, Hugo
Herent, Paul
Devilder, Matthieu
Soliman, Samer
Meyrignac, Olivier
Talabard, Marie-Pauline
Lamarque, Jean-Philippe
Dubois, Remy
Loiseau, Nicolas
Trichelair, Paul
Bendjebbar, Etienne
Garcia, Gabriel
Balleyguier, Corinne
Merad, Mansouria
Stoclin, Annabelle
Jegou, Simon
Griscelli, Franck
Tetelboum, Nicolas
Li, Yingping
Verma, Sagar
Terris, Matthieu
Dardouri, Tasnim
Gupta, Kavya
Neacsu, Ana
Chemouni, Frank
Sefta, Meriem
Jehanno, Paul
Bousaid, Imad
Boursin, Yannick
Planchet, Emmanuel
Azoulay, Mikael
Dachary, Jocelyn
Brulport, Fabien
Gonzalez, Adrian
Dehaene, Olivier
Schiratti, Jean-Baptiste
Schutte, Kathryn
Pesquet, Jean-Christophe
Talbot, Hugues
Pronier, Elodie
Wainrib, Gilles
Clozel, Thomas
Barlesi, Fabrice
Bellin, Marie-France
Blum, Michael G. B.
author_sort Lassau, Nathalie
collection PubMed
description The SARS-COV-2 pandemic has put pressure on intensive care units, so that identifying predictors of disease severity is a priority. We collect 58 clinical and biological variables, and chest CT scan data, from 1003 coronavirus-infected patients from two French hospitals. We train a deep learning model based on CT scans to predict severity. We then construct the multimodal AI-severity score that includes 5 clinical and biological variables (age, sex, oxygenation, urea, platelet) in addition to the deep learning model. We show that neural network analysis of CT-scans brings unique prognosis information, although it is correlated with other markers of severity (oxygenation, LDH, and CRP) explaining the measurable but limited 0.03 increase of AUC obtained when adding CT-scan information to clinical variables. Here, we show that when comparing AI-severity with 11 existing severity scores, we find significantly improved prognosis performance; AI-severity can therefore rapidly become a reference scoring approach.
format Online
Article
Text
id pubmed-7840774
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-78407742021-01-29 Integrating deep learning CT-scan model, biological and clinical variables to predict severity of COVID-19 patients Lassau, Nathalie Ammari, Samy Chouzenoux, Emilie Gortais, Hugo Herent, Paul Devilder, Matthieu Soliman, Samer Meyrignac, Olivier Talabard, Marie-Pauline Lamarque, Jean-Philippe Dubois, Remy Loiseau, Nicolas Trichelair, Paul Bendjebbar, Etienne Garcia, Gabriel Balleyguier, Corinne Merad, Mansouria Stoclin, Annabelle Jegou, Simon Griscelli, Franck Tetelboum, Nicolas Li, Yingping Verma, Sagar Terris, Matthieu Dardouri, Tasnim Gupta, Kavya Neacsu, Ana Chemouni, Frank Sefta, Meriem Jehanno, Paul Bousaid, Imad Boursin, Yannick Planchet, Emmanuel Azoulay, Mikael Dachary, Jocelyn Brulport, Fabien Gonzalez, Adrian Dehaene, Olivier Schiratti, Jean-Baptiste Schutte, Kathryn Pesquet, Jean-Christophe Talbot, Hugues Pronier, Elodie Wainrib, Gilles Clozel, Thomas Barlesi, Fabrice Bellin, Marie-France Blum, Michael G. B. Nat Commun Article The SARS-COV-2 pandemic has put pressure on intensive care units, so that identifying predictors of disease severity is a priority. We collect 58 clinical and biological variables, and chest CT scan data, from 1003 coronavirus-infected patients from two French hospitals. We train a deep learning model based on CT scans to predict severity. We then construct the multimodal AI-severity score that includes 5 clinical and biological variables (age, sex, oxygenation, urea, platelet) in addition to the deep learning model. We show that neural network analysis of CT-scans brings unique prognosis information, although it is correlated with other markers of severity (oxygenation, LDH, and CRP) explaining the measurable but limited 0.03 increase of AUC obtained when adding CT-scan information to clinical variables. Here, we show that when comparing AI-severity with 11 existing severity scores, we find significantly improved prognosis performance; AI-severity can therefore rapidly become a reference scoring approach. Nature Publishing Group UK 2021-01-27 /pmc/articles/PMC7840774/ /pubmed/33504775 http://dx.doi.org/10.1038/s41467-020-20657-4 Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Lassau, Nathalie
Ammari, Samy
Chouzenoux, Emilie
Gortais, Hugo
Herent, Paul
Devilder, Matthieu
Soliman, Samer
Meyrignac, Olivier
Talabard, Marie-Pauline
Lamarque, Jean-Philippe
Dubois, Remy
Loiseau, Nicolas
Trichelair, Paul
Bendjebbar, Etienne
Garcia, Gabriel
Balleyguier, Corinne
Merad, Mansouria
Stoclin, Annabelle
Jegou, Simon
Griscelli, Franck
Tetelboum, Nicolas
Li, Yingping
Verma, Sagar
Terris, Matthieu
Dardouri, Tasnim
Gupta, Kavya
Neacsu, Ana
Chemouni, Frank
Sefta, Meriem
Jehanno, Paul
Bousaid, Imad
Boursin, Yannick
Planchet, Emmanuel
Azoulay, Mikael
Dachary, Jocelyn
Brulport, Fabien
Gonzalez, Adrian
Dehaene, Olivier
Schiratti, Jean-Baptiste
Schutte, Kathryn
Pesquet, Jean-Christophe
Talbot, Hugues
Pronier, Elodie
Wainrib, Gilles
Clozel, Thomas
Barlesi, Fabrice
Bellin, Marie-France
Blum, Michael G. B.
Integrating deep learning CT-scan model, biological and clinical variables to predict severity of COVID-19 patients
title Integrating deep learning CT-scan model, biological and clinical variables to predict severity of COVID-19 patients
title_full Integrating deep learning CT-scan model, biological and clinical variables to predict severity of COVID-19 patients
title_fullStr Integrating deep learning CT-scan model, biological and clinical variables to predict severity of COVID-19 patients
title_full_unstemmed Integrating deep learning CT-scan model, biological and clinical variables to predict severity of COVID-19 patients
title_short Integrating deep learning CT-scan model, biological and clinical variables to predict severity of COVID-19 patients
title_sort integrating deep learning ct-scan model, biological and clinical variables to predict severity of covid-19 patients
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7840774/
https://www.ncbi.nlm.nih.gov/pubmed/33504775
http://dx.doi.org/10.1038/s41467-020-20657-4
work_keys_str_mv AT lassaunathalie integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients
AT ammarisamy integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients
AT chouzenouxemilie integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients
AT gortaishugo integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients
AT herentpaul integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients
AT devildermatthieu integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients
AT solimansamer integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients
AT meyrignacolivier integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients
AT talabardmariepauline integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients
AT lamarquejeanphilippe integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients
AT duboisremy integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients
AT loiseaunicolas integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients
AT trichelairpaul integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients
AT bendjebbaretienne integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients
AT garciagabriel integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients
AT balleyguiercorinne integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients
AT meradmansouria integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients
AT stoclinannabelle integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients
AT jegousimon integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients
AT griscellifranck integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients
AT tetelboumnicolas integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients
AT liyingping integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients
AT vermasagar integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients
AT terrismatthieu integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients
AT dardouritasnim integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients
AT guptakavya integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients
AT neacsuana integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients
AT chemounifrank integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients
AT seftameriem integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients
AT jehannopaul integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients
AT bousaidimad integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients
AT boursinyannick integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients
AT planchetemmanuel integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients
AT azoulaymikael integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients
AT dacharyjocelyn integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients
AT brulportfabien integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients
AT gonzalezadrian integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients
AT dehaeneolivier integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients
AT schirattijeanbaptiste integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients
AT schuttekathryn integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients
AT pesquetjeanchristophe integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients
AT talbothugues integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients
AT pronierelodie integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients
AT wainribgilles integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients
AT clozelthomas integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients
AT barlesifabrice integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients
AT bellinmariefrance integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients
AT blummichaelgb integratingdeeplearningctscanmodelbiologicalandclinicalvariablestopredictseverityofcovid19patients