Cargando…

Occurrence and diversity of Sarcocystidae protozoa in muscle and brain tissues of bats from São Paulo state, Brazil()

Studies on infectious and emerging diseases caused by bats have been increasing worldwide due to their well-recognised status as a reservoir species for various infectious agents as well as their close relationship to humans and animals. This study reports the molecular frequency and diversity of th...

Descripción completa

Detalles Bibliográficos
Autores principales: Cabral, Aline Diniz, Su, Chunlei, Soares, Rodrigo Martins, Gennari, Solange Maria, Sperança, Márcia Aparecida, da Rosa, Adriana Ruckert, Pena, Hilda Fátima Jesus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7840805/
https://www.ncbi.nlm.nih.gov/pubmed/33537206
http://dx.doi.org/10.1016/j.ijppaw.2021.01.003
Descripción
Sumario:Studies on infectious and emerging diseases caused by bats have been increasing worldwide due to their well-recognised status as a reservoir species for various infectious agents as well as their close relationship to humans and animals. This study reports the molecular frequency and diversity of the parasites belonging to the Sarcocystidae family in bats in São Paulo state, Brazil. A total of 2892 tissue samples (brain and pectoral muscle/heart homogenates) from 1921 bats belonging to 36 species were collected, and the Sarcocystidae protozoan 18S ribosomal RNA encoding genes (18S rDNA) were detected by nested PCR and Sanger sequencing. The relative prevalence of Sarcocystidae species was 4.7% (91/1921) among 16 bat species, including insectivorous (n = 65), frugivorous (n = 13) and nectarivorous (n = 11) bats. From 66 sequenced positive samples, 50 were found to be suitable for analysis. Ten samples from insectivorous and nectarivorous bats showed 100% similarity with Neospora caninum (n = 1), Hammondia hammondi (n = 1), Cystoisospora canis (n = 1), Nephroisospora eptesici (n = 1), Sarcocystis (Frenkelia) glareoli (n = 1), and Toxoplasma gondii (n = 5). The 45 non-T. gondii samples revealed 15 different 18S rDNA alleles with identities varying from 96.1 to 100% with several Sarcocystidae species, which might suggest that bats can harbour a large variety of Sarcocystidae organisms. From the five T. gondii-positive tissue samples, three samples from two different bat specimens of the insectivorous Eumops glacinus were characterised using 11 PCR-restriction fragment length polymorphism (RFLP) markers, revealing the non-archetypal ToxoDB genotypes #6 (type BrI), which is one of the most prevalent in different hosts and regions from Brazil, and #69. We recommend the inclusion of T. gondii as a differential diagnosis for rabies and other neurological syndromes in bats.