Cargando…
Machine Learning for Histologic Subtype Classification of Non-Small Cell Lung Cancer: A Retrospective Multicenter Radiomics Study
BACKGROUND: Histologic phenotype identification of Non-Small Cell Lung Cancer (NSCLC) is essential for treatment planning and prognostic prediction. The prediction model based on radiomics analysis has the potential to quantify tumor phenotypic characteristics non-invasively. However, most existing...
Autores principales: | Yang, Fengchang, Chen, Wei, Wei, Haifeng, Zhang, Xianru, Yuan, Shuanghu, Qiao, Xu, Chen, Yen-Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7840845/ https://www.ncbi.nlm.nih.gov/pubmed/33520719 http://dx.doi.org/10.3389/fonc.2020.608598 |
Ejemplares similares
-
Machine Learning-Based Analysis of MR Multiparametric Radiomics for the Subtype Classification of Breast Cancer
por: Xie, Tianwen, et al.
Publicado: (2019) -
Radiomics-Based Features for Prediction of Histological Subtypes in Central Lung Cancer
por: Li, Huanhuan, et al.
Publicado: (2021) -
Deep learning-enhanced radiomics for histologic classification and grade stratification of stage IA lung adenocarcinoma: a multicenter study
por: Pei, Guotian, et al.
Publicado: (2023) -
CT-based radiomics with various classifiers for histological differentiation of parotid gland tumors
por: Lu, Yang, et al.
Publicado: (2023) -
Preoperative Nomogram for Differentiation of Histological Subtypes in Ovarian Cancer Based on Computer Tomography Radiomics
por: Zhu, Haiyan, et al.
Publicado: (2021)