Cargando…
COVINet: a convolutional neural network approach for predicting COVID-19 from chest X-ray images
COVID-19 pandemic is widely spreading over the entire world and has established significant community spread. Fostering a prediction system can help prepare the officials to respond properly and quickly. Medical imaging like X-ray and computed tomography (CT) can play an important role in the early...
Autores principales: | Umer, Muhammad, Ashraf, Imran, Ullah, Saleem, Mehmood, Arif, Choi, Gyu Sang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7841043/ https://www.ncbi.nlm.nih.gov/pubmed/33527000 http://dx.doi.org/10.1007/s12652-021-02917-3 |
Ejemplares similares
-
COVINet: A hybrid model for classification of COVID and Non-COVID pneumonia in CT and X-Ray imagery
por: Mittal, Vasu, et al.
Publicado: (2023) -
Detecting sarcasm in multi-domain datasets using convolutional neural networks and long short term memory network model
por: Jamil, Ramish, et al.
Publicado: (2021) -
Convolutional neural networks for the classification of chest X-rays in the IoT era
por: Almezhghwi, Khaled, et al.
Publicado: (2021) -
Effective Utilization of Multiple Convolutional Neural Networks for Chest X-Ray Classification
por: Rammuni Silva, Ravidu Suien, et al.
Publicado: (2022) -
A pre-trained convolutional neural network with optimized capsule networks for chest X-rays COVID-19 diagnosis
por: AbouEl-Magd, Lobna M., et al.
Publicado: (2022)