Cargando…
Kallistatin Suppresses Cell Proliferation and Invasion and Promotes Apoptosis in Cervical Cancer Through Blocking NF-κB Signaling
Kallistatin has been recognized as an endogenous angiogenesis inhibitor and exerts pleiotropic effects in inhibiting tumor growth, migration, apoptosis, and inflammation. The purpose of the present study was to investigate the potential role and mechanisms of kallistatin in cervical cancer. We demon...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cognizant Communication Corporation
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7841074/ https://www.ncbi.nlm.nih.gov/pubmed/27983915 http://dx.doi.org/10.3727/096504016X14799180778233 |
_version_ | 1783643721311453184 |
---|---|
author | Wang, Tao Shi, Fan Wang, JiQuan Liu, Zi Su, Jin |
author_facet | Wang, Tao Shi, Fan Wang, JiQuan Liu, Zi Su, Jin |
author_sort | Wang, Tao |
collection | PubMed |
description | Kallistatin has been recognized as an endogenous angiogenesis inhibitor and exerts pleiotropic effects in inhibiting tumor growth, migration, apoptosis, and inflammation. The purpose of the present study was to investigate the potential role and mechanisms of kallistatin in cervical cancer. We demonstrated that kallistatin effectively inhibited cell proliferation and enhanced apoptosis in a dose-dependent manner. Additionally, kallistatin suppressed migration and invasion activities and markedly reduced the expression of matrix-degrading metalloproteinases, progelatinase (MMP-2), MMP-9, and urokinase-type PA (uPA). Kallistatin reversed the epithelial–mesenchymal transition (EMT) and caused the upregulation of epithelial markers such as E-cadherin and inhibited mesenchymal markers such as N-cadherin and vimentin. Moreover, kallistatin led to a marked decrease in the expression of vascular endothelial growth factor (VEGF) and HIF-1α. In a xenograft mouse model, kallistatin treatment reduced tumor growth. Importantly, kallistatin strikingly impeded NF-κB activation by suppressing IκBα degradation and the level of phosphorylation of p65. Interestingly, similar to kallistatin, treatment with PDTC (an inhibitor of NF-κB) also attenuated cell invasion and migration. Taken together, these findings suggest that kallistatin suppresses cervical cancer cell proliferation, migration, and EMT and promotes cell apoptosis by blocking the NF-κB signaling pathway, suggesting that kallistatin may be a novel therapeutic target for cervical cancer treatment. |
format | Online Article Text |
id | pubmed-7841074 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Cognizant Communication Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-78410742021-02-16 Kallistatin Suppresses Cell Proliferation and Invasion and Promotes Apoptosis in Cervical Cancer Through Blocking NF-κB Signaling Wang, Tao Shi, Fan Wang, JiQuan Liu, Zi Su, Jin Oncol Res Article Kallistatin has been recognized as an endogenous angiogenesis inhibitor and exerts pleiotropic effects in inhibiting tumor growth, migration, apoptosis, and inflammation. The purpose of the present study was to investigate the potential role and mechanisms of kallistatin in cervical cancer. We demonstrated that kallistatin effectively inhibited cell proliferation and enhanced apoptosis in a dose-dependent manner. Additionally, kallistatin suppressed migration and invasion activities and markedly reduced the expression of matrix-degrading metalloproteinases, progelatinase (MMP-2), MMP-9, and urokinase-type PA (uPA). Kallistatin reversed the epithelial–mesenchymal transition (EMT) and caused the upregulation of epithelial markers such as E-cadherin and inhibited mesenchymal markers such as N-cadherin and vimentin. Moreover, kallistatin led to a marked decrease in the expression of vascular endothelial growth factor (VEGF) and HIF-1α. In a xenograft mouse model, kallistatin treatment reduced tumor growth. Importantly, kallistatin strikingly impeded NF-κB activation by suppressing IκBα degradation and the level of phosphorylation of p65. Interestingly, similar to kallistatin, treatment with PDTC (an inhibitor of NF-κB) also attenuated cell invasion and migration. Taken together, these findings suggest that kallistatin suppresses cervical cancer cell proliferation, migration, and EMT and promotes cell apoptosis by blocking the NF-κB signaling pathway, suggesting that kallistatin may be a novel therapeutic target for cervical cancer treatment. Cognizant Communication Corporation 2017-05-24 /pmc/articles/PMC7841074/ /pubmed/27983915 http://dx.doi.org/10.3727/096504016X14799180778233 Text en Copyright © 2017 Cognizant, LLC. http://creativecommons.org/licenses/by-nc-nd/4.0/ This article is licensed under a Creative Commons Attribution-NonCommercial NoDerivatives 4.0 International License. |
spellingShingle | Article Wang, Tao Shi, Fan Wang, JiQuan Liu, Zi Su, Jin Kallistatin Suppresses Cell Proliferation and Invasion and Promotes Apoptosis in Cervical Cancer Through Blocking NF-κB Signaling |
title | Kallistatin Suppresses Cell Proliferation and Invasion and Promotes Apoptosis in Cervical Cancer Through Blocking NF-κB Signaling |
title_full | Kallistatin Suppresses Cell Proliferation and Invasion and Promotes Apoptosis in Cervical Cancer Through Blocking NF-κB Signaling |
title_fullStr | Kallistatin Suppresses Cell Proliferation and Invasion and Promotes Apoptosis in Cervical Cancer Through Blocking NF-κB Signaling |
title_full_unstemmed | Kallistatin Suppresses Cell Proliferation and Invasion and Promotes Apoptosis in Cervical Cancer Through Blocking NF-κB Signaling |
title_short | Kallistatin Suppresses Cell Proliferation and Invasion and Promotes Apoptosis in Cervical Cancer Through Blocking NF-κB Signaling |
title_sort | kallistatin suppresses cell proliferation and invasion and promotes apoptosis in cervical cancer through blocking nf-κb signaling |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7841074/ https://www.ncbi.nlm.nih.gov/pubmed/27983915 http://dx.doi.org/10.3727/096504016X14799180778233 |
work_keys_str_mv | AT wangtao kallistatinsuppressescellproliferationandinvasionandpromotesapoptosisincervicalcancerthroughblockingnfkbsignaling AT shifan kallistatinsuppressescellproliferationandinvasionandpromotesapoptosisincervicalcancerthroughblockingnfkbsignaling AT wangjiquan kallistatinsuppressescellproliferationandinvasionandpromotesapoptosisincervicalcancerthroughblockingnfkbsignaling AT liuzi kallistatinsuppressescellproliferationandinvasionandpromotesapoptosisincervicalcancerthroughblockingnfkbsignaling AT sujin kallistatinsuppressescellproliferationandinvasionandpromotesapoptosisincervicalcancerthroughblockingnfkbsignaling |