Cargando…

Upregulated miR-9-3p Promotes Cell Growth and Inhibits Apoptosis in Medullary Thyroid Carcinoma by Targeting BLCAP

Medullary thyroid carcinoma (MTC) is a neuroendocrine cancer derived from parafollicular C cells in the thyroid gland. It has great interest as a research focus because of its unusual genetic, clinical, and prognostic characteristics. However, the pathogenesis in MTC is not completely clear. We inve...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Yangjing, Zhang, Shaoqiang, Zhao, Ruimin, Zhao, Qian, Zhang, Ting
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cognizant Communication Corporation 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7841133/
https://www.ncbi.nlm.nih.gov/pubmed/27938505
http://dx.doi.org/10.3727/096504016X14791715355957
Descripción
Sumario:Medullary thyroid carcinoma (MTC) is a neuroendocrine cancer derived from parafollicular C cells in the thyroid gland. It has great interest as a research focus because of its unusual genetic, clinical, and prognostic characteristics. However, the pathogenesis in MTC is not completely clear. We investigated the role of miR-9-3p and bladder cancer-associated protein (BLCAP) in MTC TT cells. First, miR-9-3p expression was upregulated in human MTC tissues and TT cells and compared to the control by RT-PCR. Flow cytometric analysis indicated that the cell cycle progression in TT cells was significantly inhibited by the miR-9-3p inhibitor but was increased by the miR-9-3p mimic. On the contrary, the apoptosis of TT cells was significantly increased by the miR-9-3p inhibitor and suppressed by the miR-9-3p mimic. A similar change pattern was observed in the expression of apoptosis-regulated protein caspase 3 induced by the miR-9-3p mimic or inhibitor in TT cells. We then identified that BLCAP is a target of miR-9-3p by bioinformatic prediction and luciferase reporter assay. The expression of BLCAP was also significantly downregulated by the miR-9-3p mimic while being upregulated by the miR-9-3p inhibitor in TT cells. Furthermore, we confirmed that the inhibited apoptosis of TT cells induced by the miR-9-3p mimic was enhanced by BLCAP overexpression. The levels of apoptosis were strongly decreased by BLCAP silencing in TT cells, which were not further influenced by the miR-9-3p inhibitor. In summary, upregulated miR-9-3p has a positive role in human MTC progression by regulating the growth and apoptosis of cancer cells via targeting BLCAP. This might represent a possible diagnosis or therapeutic target for MTC.