Cargando…
Discovery of potential inhibitors against New Delhi metallo-β-lactamase-1 from natural compounds: in silico-based methods
New Delhi metallo-β-lactamase variants and different types of metallo-β-lactamases have attracted enormous consideration for hydrolyzing almost all β-lactam antibiotics, which leads to multi drug resistance bacteria. Metallo-β-lactamases genes have disseminated in hospitals and all parts of the worl...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7841178/ https://www.ncbi.nlm.nih.gov/pubmed/33504907 http://dx.doi.org/10.1038/s41598-021-82009-6 |
_version_ | 1783643747237494784 |
---|---|
author | Salari-jazi, Azhar Mahnam, Karim Sadeghi, Parisa Damavandi, Mohamad Sadegh Faghri, Jamshid |
author_facet | Salari-jazi, Azhar Mahnam, Karim Sadeghi, Parisa Damavandi, Mohamad Sadegh Faghri, Jamshid |
author_sort | Salari-jazi, Azhar |
collection | PubMed |
description | New Delhi metallo-β-lactamase variants and different types of metallo-β-lactamases have attracted enormous consideration for hydrolyzing almost all β-lactam antibiotics, which leads to multi drug resistance bacteria. Metallo-β-lactamases genes have disseminated in hospitals and all parts of the world and became a public health concern. There is no inhibitor for New Delhi metallo-β-lactamase-1 and other metallo-β-lactamases classes, so metallo-β-lactamases inhibitor drugs became an urgent need. In this study, multi-steps virtual screening was done over the NPASS database with 35,032 natural compounds. At first Captopril was extracted from 4EXS PDB code and use as a template for the first structural screening and 500 compounds obtained as hit compounds by molecular docking. Then the best ligand, i.e. NPC120633 was used as templet and 800 similar compounds were obtained. As a final point, ten compounds i.e. NPC171932, NPC100251, NPC18185, NPC98583, NPC112380, NPC471403, NPC471404, NPC472454, NPC473010 and NPC300657 had proper docking scores, and a 50 ns molecular dynamics simulation was performed for calculation binding free energy of each compound with New Delhi metallo-β-lactamase. Protein sequence alignment, 3D conformational alignment, pharmacophore modeling on all New Delhi metallo-β-lactamase variants and all types of metallo-β-lactamases were done. Quantum chemical perspective based on the fragment molecular orbital (FMO) method was performed to discover conserved and crucial residues in the catalytic activity of metallo-β-lactamases. These residues had similar 3D coordinates of spatial location in the 3D conformational alignment. So it is posibble that all types of metallo-β-lactamases can inhibit by these ten compounds. Therefore, these compounds were proper to mostly inhibit all metallo-β-lactamases in experimental studies. |
format | Online Article Text |
id | pubmed-7841178 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-78411782021-01-29 Discovery of potential inhibitors against New Delhi metallo-β-lactamase-1 from natural compounds: in silico-based methods Salari-jazi, Azhar Mahnam, Karim Sadeghi, Parisa Damavandi, Mohamad Sadegh Faghri, Jamshid Sci Rep Article New Delhi metallo-β-lactamase variants and different types of metallo-β-lactamases have attracted enormous consideration for hydrolyzing almost all β-lactam antibiotics, which leads to multi drug resistance bacteria. Metallo-β-lactamases genes have disseminated in hospitals and all parts of the world and became a public health concern. There is no inhibitor for New Delhi metallo-β-lactamase-1 and other metallo-β-lactamases classes, so metallo-β-lactamases inhibitor drugs became an urgent need. In this study, multi-steps virtual screening was done over the NPASS database with 35,032 natural compounds. At first Captopril was extracted from 4EXS PDB code and use as a template for the first structural screening and 500 compounds obtained as hit compounds by molecular docking. Then the best ligand, i.e. NPC120633 was used as templet and 800 similar compounds were obtained. As a final point, ten compounds i.e. NPC171932, NPC100251, NPC18185, NPC98583, NPC112380, NPC471403, NPC471404, NPC472454, NPC473010 and NPC300657 had proper docking scores, and a 50 ns molecular dynamics simulation was performed for calculation binding free energy of each compound with New Delhi metallo-β-lactamase. Protein sequence alignment, 3D conformational alignment, pharmacophore modeling on all New Delhi metallo-β-lactamase variants and all types of metallo-β-lactamases were done. Quantum chemical perspective based on the fragment molecular orbital (FMO) method was performed to discover conserved and crucial residues in the catalytic activity of metallo-β-lactamases. These residues had similar 3D coordinates of spatial location in the 3D conformational alignment. So it is posibble that all types of metallo-β-lactamases can inhibit by these ten compounds. Therefore, these compounds were proper to mostly inhibit all metallo-β-lactamases in experimental studies. Nature Publishing Group UK 2021-01-27 /pmc/articles/PMC7841178/ /pubmed/33504907 http://dx.doi.org/10.1038/s41598-021-82009-6 Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Salari-jazi, Azhar Mahnam, Karim Sadeghi, Parisa Damavandi, Mohamad Sadegh Faghri, Jamshid Discovery of potential inhibitors against New Delhi metallo-β-lactamase-1 from natural compounds: in silico-based methods |
title | Discovery of potential inhibitors against New Delhi metallo-β-lactamase-1 from natural compounds: in silico-based methods |
title_full | Discovery of potential inhibitors against New Delhi metallo-β-lactamase-1 from natural compounds: in silico-based methods |
title_fullStr | Discovery of potential inhibitors against New Delhi metallo-β-lactamase-1 from natural compounds: in silico-based methods |
title_full_unstemmed | Discovery of potential inhibitors against New Delhi metallo-β-lactamase-1 from natural compounds: in silico-based methods |
title_short | Discovery of potential inhibitors against New Delhi metallo-β-lactamase-1 from natural compounds: in silico-based methods |
title_sort | discovery of potential inhibitors against new delhi metallo-β-lactamase-1 from natural compounds: in silico-based methods |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7841178/ https://www.ncbi.nlm.nih.gov/pubmed/33504907 http://dx.doi.org/10.1038/s41598-021-82009-6 |
work_keys_str_mv | AT salarijaziazhar discoveryofpotentialinhibitorsagainstnewdelhimetalloblactamase1fromnaturalcompoundsinsilicobasedmethods AT mahnamkarim discoveryofpotentialinhibitorsagainstnewdelhimetalloblactamase1fromnaturalcompoundsinsilicobasedmethods AT sadeghiparisa discoveryofpotentialinhibitorsagainstnewdelhimetalloblactamase1fromnaturalcompoundsinsilicobasedmethods AT damavandimohamadsadegh discoveryofpotentialinhibitorsagainstnewdelhimetalloblactamase1fromnaturalcompoundsinsilicobasedmethods AT faghrijamshid discoveryofpotentialinhibitorsagainstnewdelhimetalloblactamase1fromnaturalcompoundsinsilicobasedmethods |