Cargando…
A Heterogeneous Spiking Neural Network for Unsupervised Learning of Spatiotemporal Patterns
This paper introduces a heterogeneous spiking neural network (H-SNN) as a novel, feedforward SNN structure capable of learning complex spatiotemporal patterns with spike-timing-dependent plasticity (STDP) based unsupervised training. Within H-SNN, hierarchical spatial and temporal patterns are const...
Autores principales: | She, Xueyuan, Dash, Saurabh, Kim, Daehyun, Mukhopadhyay, Saibal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7841292/ https://www.ncbi.nlm.nih.gov/pubmed/33519366 http://dx.doi.org/10.3389/fnins.2020.615756 |
Ejemplares similares
-
MONETA: A Processing-In-Memory-Based Hardware Platform for the Hybrid Convolutional Spiking Neural Network With Online Learning
por: Kim, Daehyun, et al.
Publicado: (2022) -
Heterogeneous recurrent spiking neural network for spatio-temporal classification
por: Chakraborty, Biswadeep, et al.
Publicado: (2023) -
Characterization of Generalizability of Spike Timing Dependent Plasticity Trained Spiking Neural Networks
por: Chakraborty, Biswadeep, et al.
Publicado: (2021) -
Unsupervised Learning and Clustered Connectivity Enhance Reinforcement Learning in Spiking Neural Networks
por: Weidel, Philipp, et al.
Publicado: (2021) -
Unsupervised Learning on Resistive Memory Array Based Spiking Neural Networks
por: Guo, Yilong, et al.
Publicado: (2019)