Cargando…
Quantifying Dynamical High-Order Interdependencies From the O-Information: An Application to Neural Spiking Dynamics
We address the problem of efficiently and informatively quantifying how multiplets of variables carry information about the future of the dynamical system they belong to. In particular we want to identify groups of variables carrying redundant or synergistic information, and track how the size and t...
Autores principales: | Stramaglia, Sebastiano, Scagliarini, Tomas, Daniels, Bryan C., Marinazzo, Daniele |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7841410/ https://www.ncbi.nlm.nih.gov/pubmed/33519503 http://dx.doi.org/10.3389/fphys.2020.595736 |
Ejemplares similares
-
Synergistic Information Transfer in the Global System of Financial Markets
por: Scagliarini, Tomas, et al.
Publicado: (2020) -
Synergistic information in a dynamical model implemented on the human structural connectome reveals spatially distinct associations with age
por: Nuzzi, Davide, et al.
Publicado: (2020) -
Pairwise and high-order dependencies in the cryptocurrency trading network
por: Scagliarini, Tomas, et al.
Publicado: (2022) -
Information Flow in Networks and the Law of Diminishing Marginal Returns: Evidence from Modeling and Human Electroencephalographic Recordings
por: Marinazzo, Daniele, et al.
Publicado: (2012) -
Methods for Quantifying Neurotransmitter Dynamics in the Living Brain With PET Imaging
por: Ceccarini, Jenny, et al.
Publicado: (2020)