Cargando…

Machine Learning of Coarse-Grained Models for Organic Molecules and Polymers: Progress, Opportunities, and Challenges

[Image: see text] Machine learning (ML) has emerged as one of the most powerful tools transforming all areas of science and engineering. The nature of molecular dynamics (MD) simulations, complex and time-consuming calculations, makes them particularly suitable for ML research. This review article f...

Descripción completa

Detalles Bibliográficos
Autores principales: Ye, Huilin, Xian, Weikang, Li, Ying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7841771/
https://www.ncbi.nlm.nih.gov/pubmed/33521417
http://dx.doi.org/10.1021/acsomega.0c05321
Descripción
Sumario:[Image: see text] Machine learning (ML) has emerged as one of the most powerful tools transforming all areas of science and engineering. The nature of molecular dynamics (MD) simulations, complex and time-consuming calculations, makes them particularly suitable for ML research. This review article focuses on recent advancements in developing efficient and accurate coarse-grained (CG) models using various ML methods, in terms of regulating the coarse-graining process, constructing adequate descriptors/features, generating representative training data sets, and optimization of the loss function. Two classes of the CG models are introduced: bottom-up and top-down CG methods. To illustrate these methods and demonstrate the open methodological questions, we survey several important principles in constructing CG models and how these are incorporated into ML methods and improved with specific learning techniques. Finally, we discuss some key aspects of developing machine-learned CG models with high accuracy and efficiency. Besides, we describe how these aspects are tackled in state-of-the-art methods and which remain to be addressed in the near future. We expect that these machine-learned CG models can address thermodynamic consistent, transferable, and representative issues in classical CG models.