Cargando…
Machine Learning of Coarse-Grained Models for Organic Molecules and Polymers: Progress, Opportunities, and Challenges
[Image: see text] Machine learning (ML) has emerged as one of the most powerful tools transforming all areas of science and engineering. The nature of molecular dynamics (MD) simulations, complex and time-consuming calculations, makes them particularly suitable for ML research. This review article f...
Autores principales: | Ye, Huilin, Xian, Weikang, Li, Ying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7841771/ https://www.ncbi.nlm.nih.gov/pubmed/33521417 http://dx.doi.org/10.1021/acsomega.0c05321 |
Ejemplares similares
-
Machine-Learning-Assisted De Novo Design of Organic Molecules and Polymers: Opportunities and Challenges
por: Chen, Guang, et al.
Publicado: (2020) -
Machine learning coarse grained models for water
por: Chan, Henry, et al.
Publicado: (2019) -
Integration of Machine Learning and Coarse-Grained Molecular Simulations for Polymer Materials: Physical Understandings and Molecular Design
por: Nguyen, Danh, et al.
Publicado: (2022) -
Machine learning coarse-grained potentials of protein thermodynamics
por: Majewski, Maciej, et al.
Publicado: (2023) -
Machine Learning of Coarse-Grained Molecular Dynamics
Force Fields
por: Wang, Jiang, et al.
Publicado: (2019)