Cargando…

Efficient One-Step Conversion of a Low-Grade Vegetable Oil to Biodiesel over a Zinc Carboxylate Metal–Organic Framework

[Image: see text] In this study, a metal–organic framework, namely, Zn(3)(BTC)(2) (BTC = 1,3,5-benzenetricaboxylic acid), was solvothermally synthesized and employed as a catalyst for biodiesel production from degummed vegetable oil via a one-step transesterification and esterification reaction. The...

Descripción completa

Detalles Bibliográficos
Autores principales: Lunardi, Valentino Bervia, Gunawan, Fransiska, Soetaredjo, Felycia Edi, Santoso, Shella Permatasari, Chen, Chun-Hu, Yuliana, Maria, Kurniawan, Alfin, Lie, Jenni, Angkawijaya, Artik Elisa, Ismadji, Suryadi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7841777/
https://www.ncbi.nlm.nih.gov/pubmed/33521424
http://dx.doi.org/10.1021/acsomega.0c03826
Descripción
Sumario:[Image: see text] In this study, a metal–organic framework, namely, Zn(3)(BTC)(2) (BTC = 1,3,5-benzenetricaboxylic acid), was solvothermally synthesized and employed as a catalyst for biodiesel production from degummed vegetable oil via a one-step transesterification and esterification reaction. The resulting Zn(3)(BTC)(2) particles exhibit a well-defined triclinic structure with an average size of about 1.2 μm, high specific surface area of 1176 m(2)/g, and thermal stability up to 300 °C. The response surface methodology–Box–Behnken design (RSM–BBD) was employed to identify the optimal reaction conditions and to model the biodiesel yield in relation to three important parameters, namely, the methanol/oil molar ratio (4:1–8:1), temperature (45–65 °C), and time (1.5–4.5 h). Under the optimized reaction conditions (i.e., 6:1 methanol/oil molar ratio, 65 °C, 4.5 h), the maximum biodiesel yield reached 89.89% in a 1 wt % catalyst, which agreed very well with the quadratic polynomial model’s prediction (89.96%). The intrinsic catalytic activity of Zn(3)(BTC)(2), expressed as the turnover frequency, was found to be superior to that of other MOF catalysts applied in the transesterification and esterification reactions. The reusability study showed that the as-synthesized Zn(3)(BTC)(2) catalyst exhibited good stability upon three consecutive reuses without a noticeable decrease in the methyl ester yield (∼4%) and any appreciable metal leaching (<5%). Furthermore, a preliminary technoeconomic analysis showed that the total direct operating cost for the kilogram-scale production of Zn(3)(BTC)(2) is estimated to be US$50, which may sound economically attractive.