Cargando…
Indole-3-acetamides: As Potential Antihyperglycemic and Antioxidant Agents; Synthesis, In Vitro α-Amylase Inhibitory Activity, Structure–Activity Relationship, and In Silico Studies
[Image: see text] Indole-3-acetamides (1–24) were synthesized via coupling of indole-3-acetic acid with various substituted anilines in the presence of coupling reagent 1,1-carbonyldiimidazole. The structures of synthetic molecules were elucidated through different spectroscopic techniques including...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7841949/ https://www.ncbi.nlm.nih.gov/pubmed/33521466 http://dx.doi.org/10.1021/acsomega.0c05581 |
Sumario: | [Image: see text] Indole-3-acetamides (1–24) were synthesized via coupling of indole-3-acetic acid with various substituted anilines in the presence of coupling reagent 1,1-carbonyldiimidazole. The structures of synthetic molecules were elucidated through different spectroscopic techniques including electron ionization-mass spectroscopy (EI-MS), (1)H-, (13)C NMR, and high-resolution EI-MS (HREI-MS). These compounds were screened for their antihyperglycemic and antioxidant potentials. All compounds displayed good to moderate inhibition against α-amylase enzyme with IC(50) values ranging between 1.09 ± 0.11 and 2.84 ± 0.1 μM compared to the standard acarbose (IC(50) = 0.92 ± 0.4 μM). Compound 15 (IC(50) = 1.09 ± 0.11 μM) was the most active compound of the series and exhibited good inhibition against α-amylase; in addition, this compound also exhibited good antioxidant potential with IC(50) values of 0.35 ± 0.1 and 0.81 ± 0.25 μM in 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays, respectively. The binding interactions of synthetic molecules with the enzyme’s active site were confirmed via in silico studies. The current study had identified a number of lead molecules as potential antihyperglycemic and antioxidant agents. |
---|