Cargando…
Integrative transcriptomic, proteomic, and machine learning approach to identifying feature genes of atrial fibrillation using atrial samples from patients with valvular heart disease
BACKGROUND: Atrial fibrillation (AF) is the most common arrhythmia with poorly understood mechanisms. We aimed to investigate the biological mechanism of AF and to discover feature genes by analyzing multi-omics data and by applying a machine learning approach. METHODS: At the transcriptomic level,...
Autores principales: | Liu, Yaozhong, Bai, Fan, Tang, Zhenwei, Liu, Na, Liu, Qiming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7842070/ https://www.ncbi.nlm.nih.gov/pubmed/33509101 http://dx.doi.org/10.1186/s12872-020-01819-0 |
Ejemplares similares
-
Quantitative acetylated proteomics on left atrial appendage tissues revealed atrial energy metabolism and contraction status in patients with valvular heart disease with atrial fibrillation
por: Tu, Tao, et al.
Publicado: (2022) -
Metabolomic and Proteomic Analyses of Persistent Valvular Atrial Fibrillation and Non-Valvular Atrial Fibrillation
por: Hu, Bo, et al.
Publicado: (2021) -
Identifying ceRNA Networks Associated With the Susceptibility and Persistence of Atrial Fibrillation Through Weighted Gene Co-Expression Network Analysis
por: Liu, Yaozhong, et al.
Publicado: (2021) -
Education and Atrial Fibrillation: Mendelian Randomization Study
por: Liu, Yaozhong, et al.
Publicado: (2022) -
Prognostic implications of valvular heart disease in patients with non-valvular atrial fibrillation
por: Samaras, Athanasios, et al.
Publicado: (2021)