Cargando…
CardioNet: a manually curated database for artificial intelligence-based research on cardiovascular diseases
BACKGROUND: Cardiovascular diseases (CVDs) are difficult to diagnose early and have risk factors that are easy to overlook. Early prediction and personalization of treatment through the use of artificial intelligence (AI) may help clinicians and patients manage CVDs more effectively. However, to app...
Autores principales: | Ahn, Imjin, Na, Wonjun, Kwon, Osung, Yang, Dong Hyun, Park, Gyung-Min, Gwon, Hansle, Kang, Hee Jun, Jeong, Yeon Uk, Yoo, Jungsun, Kim, Yunha, Jun, Tae Joon, Kim, Young-Hak |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7842077/ https://www.ncbi.nlm.nih.gov/pubmed/33509180 http://dx.doi.org/10.1186/s12911-021-01392-2 |
Ejemplares similares
-
CardioNet: A human metabolic network suited for the study of cardiomyocyte metabolism
por: Karlstädt, Anja, et al.
Publicado: (2012) -
CardioNet: Automatic Semantic Segmentation to Calculate the Cardiothoracic Ratio for Cardiomegaly and Other Chest Diseases
por: Jafar, Abbas, et al.
Publicado: (2022) -
Self–Training With Quantile Errors for Multivariate Missing Data Imputation for Regression Problems in Electronic Medical Records: Algorithm Development Study
por: Gwon, Hansle, et al.
Publicado: (2021) -
Machine Learning–Based Hospital Discharge Prediction for Patients With Cardiovascular Diseases: Development and Usability Study
por: Ahn, Imjin, et al.
Publicado: (2021) -
Heterogeneous graph construction and HinSAGE learning from electronic medical records
por: Cho, Ha Na, et al.
Publicado: (2022)