Cargando…
PDE4 inhibition as a therapeutic strategy for improvement of pulmonary dysfunctions in Covid-19 and cigarette smoking
Angiotensin-converting enzyme 2 (ACE2) is the binding-site and entry-point for SARS-CoV-2 in human and highly expressed in the lung. Cigarette smoking (CS) is the leading cause of pulmonary and cardiovascular diseases. Chronic CS leads to upregulation of bronchial ACE2 inducing a high vulnerability...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Published by Elsevier Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7842152/ https://www.ncbi.nlm.nih.gov/pubmed/33515531 http://dx.doi.org/10.1016/j.bcp.2021.114431 |
Sumario: | Angiotensin-converting enzyme 2 (ACE2) is the binding-site and entry-point for SARS-CoV-2 in human and highly expressed in the lung. Cigarette smoking (CS) is the leading cause of pulmonary and cardiovascular diseases. Chronic CS leads to upregulation of bronchial ACE2 inducing a high vulnerability in COVID-19 smoker patients. Interestingly, CS-induced dysregulation of pulmonary renin-angiotensin system (RAS) in part contributing into the potential pathogenesis COVID-19 pneumonia and acute respiratory distress syndrome (ARDS). Since, CS-mediated ACE2 activations is not the main pathway for increasing the risk of COVID-19, it appeared that AngII/AT(1)R might induce an inflammatory-burst in COVID-19 response by up-regulating cyclic nucleotide phosphodiesterase type 4 (PDE4), which hydrolyses specifically the second intracellular messenger 3′, 5′-cyclic AMP (cAMP). It must be pointed out that CS might induce PDE4 up-regulation similarly to the COVID-19 inflammation, and therefore could potentiate COVID-19 inflammation opening the potential therapeutic effects of PDE4 inhibitor in both COVID-19-inflammation and CS. |
---|