Cargando…

Quantum Grothendieck rings as quantum cluster algebras

We define and construct a quantum Grothendieck ring for a certain monoidal subcategory of the category [Formula: see text] of representations of the quantum loop algebra introduced by Hernandez–Jimbo. We use the cluster algebra structure of the Grothendieck ring of this category to define the quantu...

Descripción completa

Detalles Bibliográficos
Autor principal: Bittmann, Léa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7842155/
https://www.ncbi.nlm.nih.gov/pubmed/33551468
http://dx.doi.org/10.1112/jlms.12369
Descripción
Sumario:We define and construct a quantum Grothendieck ring for a certain monoidal subcategory of the category [Formula: see text] of representations of the quantum loop algebra introduced by Hernandez–Jimbo. We use the cluster algebra structure of the Grothendieck ring of this category to define the quantum Grothendieck ring as a quantum cluster algebra. When the underlying simple Lie algebra is of type [Formula: see text] , we prove that this quantum Grothendieck ring contains the quantum Grothendieck ring of the category of finite‐dimensional representations of the associated quantum affine algebra. In type [Formula: see text] , we identify remarkable relations in this quantum Grothendieck ring.