Cargando…
Quantum Grothendieck rings as quantum cluster algebras
We define and construct a quantum Grothendieck ring for a certain monoidal subcategory of the category [Formula: see text] of representations of the quantum loop algebra introduced by Hernandez–Jimbo. We use the cluster algebra structure of the Grothendieck ring of this category to define the quantu...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7842155/ https://www.ncbi.nlm.nih.gov/pubmed/33551468 http://dx.doi.org/10.1112/jlms.12369 |
Sumario: | We define and construct a quantum Grothendieck ring for a certain monoidal subcategory of the category [Formula: see text] of representations of the quantum loop algebra introduced by Hernandez–Jimbo. We use the cluster algebra structure of the Grothendieck ring of this category to define the quantum Grothendieck ring as a quantum cluster algebra. When the underlying simple Lie algebra is of type [Formula: see text] , we prove that this quantum Grothendieck ring contains the quantum Grothendieck ring of the category of finite‐dimensional representations of the associated quantum affine algebra. In type [Formula: see text] , we identify remarkable relations in this quantum Grothendieck ring. |
---|