Cargando…

Quantum Grothendieck rings as quantum cluster algebras

We define and construct a quantum Grothendieck ring for a certain monoidal subcategory of the category [Formula: see text] of representations of the quantum loop algebra introduced by Hernandez–Jimbo. We use the cluster algebra structure of the Grothendieck ring of this category to define the quantu...

Descripción completa

Detalles Bibliográficos
Autor principal: Bittmann, Léa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7842155/
https://www.ncbi.nlm.nih.gov/pubmed/33551468
http://dx.doi.org/10.1112/jlms.12369
_version_ 1783643954966691840
author Bittmann, Léa
author_facet Bittmann, Léa
author_sort Bittmann, Léa
collection PubMed
description We define and construct a quantum Grothendieck ring for a certain monoidal subcategory of the category [Formula: see text] of representations of the quantum loop algebra introduced by Hernandez–Jimbo. We use the cluster algebra structure of the Grothendieck ring of this category to define the quantum Grothendieck ring as a quantum cluster algebra. When the underlying simple Lie algebra is of type [Formula: see text] , we prove that this quantum Grothendieck ring contains the quantum Grothendieck ring of the category of finite‐dimensional representations of the associated quantum affine algebra. In type [Formula: see text] , we identify remarkable relations in this quantum Grothendieck ring.
format Online
Article
Text
id pubmed-7842155
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-78421552021-02-04 Quantum Grothendieck rings as quantum cluster algebras Bittmann, Léa J Lond Math Soc Research Articles We define and construct a quantum Grothendieck ring for a certain monoidal subcategory of the category [Formula: see text] of representations of the quantum loop algebra introduced by Hernandez–Jimbo. We use the cluster algebra structure of the Grothendieck ring of this category to define the quantum Grothendieck ring as a quantum cluster algebra. When the underlying simple Lie algebra is of type [Formula: see text] , we prove that this quantum Grothendieck ring contains the quantum Grothendieck ring of the category of finite‐dimensional representations of the associated quantum affine algebra. In type [Formula: see text] , we identify remarkable relations in this quantum Grothendieck ring. John Wiley and Sons Inc. 2020-07-27 2021-01 /pmc/articles/PMC7842155/ /pubmed/33551468 http://dx.doi.org/10.1112/jlms.12369 Text en © 2020 The Authors. The Journal of the London Mathematical Society is copyright © London Mathematical Society. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Bittmann, Léa
Quantum Grothendieck rings as quantum cluster algebras
title Quantum Grothendieck rings as quantum cluster algebras
title_full Quantum Grothendieck rings as quantum cluster algebras
title_fullStr Quantum Grothendieck rings as quantum cluster algebras
title_full_unstemmed Quantum Grothendieck rings as quantum cluster algebras
title_short Quantum Grothendieck rings as quantum cluster algebras
title_sort quantum grothendieck rings as quantum cluster algebras
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7842155/
https://www.ncbi.nlm.nih.gov/pubmed/33551468
http://dx.doi.org/10.1112/jlms.12369
work_keys_str_mv AT bittmannlea quantumgrothendieckringsasquantumclusteralgebras