Cargando…
Quantum Grothendieck rings as quantum cluster algebras
We define and construct a quantum Grothendieck ring for a certain monoidal subcategory of the category [Formula: see text] of representations of the quantum loop algebra introduced by Hernandez–Jimbo. We use the cluster algebra structure of the Grothendieck ring of this category to define the quantu...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7842155/ https://www.ncbi.nlm.nih.gov/pubmed/33551468 http://dx.doi.org/10.1112/jlms.12369 |
_version_ | 1783643954966691840 |
---|---|
author | Bittmann, Léa |
author_facet | Bittmann, Léa |
author_sort | Bittmann, Léa |
collection | PubMed |
description | We define and construct a quantum Grothendieck ring for a certain monoidal subcategory of the category [Formula: see text] of representations of the quantum loop algebra introduced by Hernandez–Jimbo. We use the cluster algebra structure of the Grothendieck ring of this category to define the quantum Grothendieck ring as a quantum cluster algebra. When the underlying simple Lie algebra is of type [Formula: see text] , we prove that this quantum Grothendieck ring contains the quantum Grothendieck ring of the category of finite‐dimensional representations of the associated quantum affine algebra. In type [Formula: see text] , we identify remarkable relations in this quantum Grothendieck ring. |
format | Online Article Text |
id | pubmed-7842155 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-78421552021-02-04 Quantum Grothendieck rings as quantum cluster algebras Bittmann, Léa J Lond Math Soc Research Articles We define and construct a quantum Grothendieck ring for a certain monoidal subcategory of the category [Formula: see text] of representations of the quantum loop algebra introduced by Hernandez–Jimbo. We use the cluster algebra structure of the Grothendieck ring of this category to define the quantum Grothendieck ring as a quantum cluster algebra. When the underlying simple Lie algebra is of type [Formula: see text] , we prove that this quantum Grothendieck ring contains the quantum Grothendieck ring of the category of finite‐dimensional representations of the associated quantum affine algebra. In type [Formula: see text] , we identify remarkable relations in this quantum Grothendieck ring. John Wiley and Sons Inc. 2020-07-27 2021-01 /pmc/articles/PMC7842155/ /pubmed/33551468 http://dx.doi.org/10.1112/jlms.12369 Text en © 2020 The Authors. The Journal of the London Mathematical Society is copyright © London Mathematical Society. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Bittmann, Léa Quantum Grothendieck rings as quantum cluster algebras |
title | Quantum Grothendieck rings as quantum cluster algebras |
title_full | Quantum Grothendieck rings as quantum cluster algebras |
title_fullStr | Quantum Grothendieck rings as quantum cluster algebras |
title_full_unstemmed | Quantum Grothendieck rings as quantum cluster algebras |
title_short | Quantum Grothendieck rings as quantum cluster algebras |
title_sort | quantum grothendieck rings as quantum cluster algebras |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7842155/ https://www.ncbi.nlm.nih.gov/pubmed/33551468 http://dx.doi.org/10.1112/jlms.12369 |
work_keys_str_mv | AT bittmannlea quantumgrothendieckringsasquantumclusteralgebras |