Cargando…
Widespread myocardial dysfunction in COVID-19 patients detected by myocardial strain imaging using 2-D speckle-tracking echocardiography
COVID-19 is a multiorgan systemic inflammatory disease caused by SARS-CoV-2 virus. Patients with COVID-19 often exhibit cardiac dysfunction and myocardial injury, but imaging evidence is lacking. In the study we detected and evaluated the severity of myocardial dysfunction in COVID-19 patient popula...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Singapore
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7842392/ https://www.ncbi.nlm.nih.gov/pubmed/33510459 http://dx.doi.org/10.1038/s41401-020-00595-z |
Sumario: | COVID-19 is a multiorgan systemic inflammatory disease caused by SARS-CoV-2 virus. Patients with COVID-19 often exhibit cardiac dysfunction and myocardial injury, but imaging evidence is lacking. In the study we detected and evaluated the severity of myocardial dysfunction in COVID-19 patient population using two-dimensional speckle-tracking echocardiography (2-D STE). A total of 218 consecutive patients with confirmed diagnosis of COVID-19 who had no underlying cardiovascular diseases were enrolled and underwent transthoracic echocardiography. This study cohort included 52 (23.8%) critically ill and 166 noncritically ill patients. Global longitudinal strains (GLSs) and layer-specific longitudinal strains (LSLSs) were obtained using 2-D STE. Changes in GLS were correlated with the clinical parameters. We showed that GLS was reduced (<−21.0%) in about 83% of the patients. GLS reduction was more common in critically sick patients (98% vs. 78.3%, P < 0.001), and the mean GLS was significantly lower in the critically sick patients than those noncritical (−13.7% ± 3.4% vs. −17.4% ± 3.2%, P < 0.001). The alteration of GLS was more prominent in the subepicardium than in the subendocardium (P < 0.001). GLS was correlated to mean serum pulse oxygen saturation (SpO(2), RR = 0.42, P < 0.0001), high-sensitive C-reactive protein (hsCRP, R = −0.20, P = 0.006) and inflammatory cytokines, particularly IL-6 (R = −0.21, P = 0.003). In conclusions, our results demonstrate that myocardial dysfunction is common in COVID-19 patients, particularly those who are critically sick. Changes in indices of myocardial strain were associated with indices of inflammatory markers and hypoxia, suggesting partly secondary nature of myocardial dysfunction. |
---|