Cargando…

Early Warning Signals Based on Momentary Affect Dynamics can Expose Nearby Transitions in Depression: A Confirmatory Single-Subject Time-Series Study

BACKGROUND: In complex systems early warning signals such as rising autocorrelation, variance and network connectivity are hypothesized to anticipate relevant shifts in a system. For direct evidence hereof in depression, designs are needed in which early warning signals and symptom transitions are p...

Descripción completa

Detalles Bibliográficos
Autores principales: Wichers, Marieke, Smit, Arnout C., Snippe, Evelien
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Scandinavian Society for Person-Oriented Research 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7842626/
https://www.ncbi.nlm.nih.gov/pubmed/33569148
http://dx.doi.org/10.17505/jpor.2020.22042
_version_ 1783644013479329792
author Wichers, Marieke
Smit, Arnout C.
Snippe, Evelien
author_facet Wichers, Marieke
Smit, Arnout C.
Snippe, Evelien
author_sort Wichers, Marieke
collection PubMed
description BACKGROUND: In complex systems early warning signals such as rising autocorrelation, variance and network connectivity are hypothesized to anticipate relevant shifts in a system. For direct evidence hereof in depression, designs are needed in which early warning signals and symptom transitions are prospectively assessed within an individual. Therefore, this study aimed to detect personalized early warning signals preceding the occurrence of a major symptom transition. METHODS: Six single-subject time-series studies were conducted, collecting frequent observations of momentary affective states during a time-period when participants were at increased risk of a symptom transition. Momentary affect states were reported three times a day over three to six months (95-183 days). Depressive symptoms were measured weekly using the Symptom CheckList-90. Presence of sudden symptom transitions was assessed using change point analysis. Early warning signals were analysed using moving window techniques. RESULTS: As change point analysis revealed a significant and sudden symptom transition in one participant in the studied period, early warning signals were examined in this person. Autocorrelation (r=0·51; p<2.2e(-16)), and variance (r=0·53; p<2.2e(-16)) in ‘feeling down’, and network connectivity (r=0·42; p<2.2e(-16)) significantly increased a month before this transition occurred. These early warnings also preceded the rise in absolute levels of ‘feeling down’ and the participant’s personal indication of risk for transition. CONCLUSIONS: This study replicated the findings of a previous study and confirmed the presence of rising early warning signals a month before the symptom transition occurred. Results show the potential of early warning signals to improve personalized risk assessment in the field of psychiatry.
format Online
Article
Text
id pubmed-7842626
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Scandinavian Society for Person-Oriented Research
record_format MEDLINE/PubMed
spelling pubmed-78426262021-02-09 Early Warning Signals Based on Momentary Affect Dynamics can Expose Nearby Transitions in Depression: A Confirmatory Single-Subject Time-Series Study Wichers, Marieke Smit, Arnout C. Snippe, Evelien J Pers Oriented Res Articles BACKGROUND: In complex systems early warning signals such as rising autocorrelation, variance and network connectivity are hypothesized to anticipate relevant shifts in a system. For direct evidence hereof in depression, designs are needed in which early warning signals and symptom transitions are prospectively assessed within an individual. Therefore, this study aimed to detect personalized early warning signals preceding the occurrence of a major symptom transition. METHODS: Six single-subject time-series studies were conducted, collecting frequent observations of momentary affective states during a time-period when participants were at increased risk of a symptom transition. Momentary affect states were reported three times a day over three to six months (95-183 days). Depressive symptoms were measured weekly using the Symptom CheckList-90. Presence of sudden symptom transitions was assessed using change point analysis. Early warning signals were analysed using moving window techniques. RESULTS: As change point analysis revealed a significant and sudden symptom transition in one participant in the studied period, early warning signals were examined in this person. Autocorrelation (r=0·51; p<2.2e(-16)), and variance (r=0·53; p<2.2e(-16)) in ‘feeling down’, and network connectivity (r=0·42; p<2.2e(-16)) significantly increased a month before this transition occurred. These early warnings also preceded the rise in absolute levels of ‘feeling down’ and the participant’s personal indication of risk for transition. CONCLUSIONS: This study replicated the findings of a previous study and confirmed the presence of rising early warning signals a month before the symptom transition occurred. Results show the potential of early warning signals to improve personalized risk assessment in the field of psychiatry. Scandinavian Society for Person-Oriented Research 2020-09-10 /pmc/articles/PMC7842626/ /pubmed/33569148 http://dx.doi.org/10.17505/jpor.2020.22042 Text en © Person-Oriented Research https://person-research.org/journal/ Authors of articles published in Journal for Person-Oriented Research retain the copyright of their articles and are free to reproduce and disseminate their work.
spellingShingle Articles
Wichers, Marieke
Smit, Arnout C.
Snippe, Evelien
Early Warning Signals Based on Momentary Affect Dynamics can Expose Nearby Transitions in Depression: A Confirmatory Single-Subject Time-Series Study
title Early Warning Signals Based on Momentary Affect Dynamics can Expose Nearby Transitions in Depression: A Confirmatory Single-Subject Time-Series Study
title_full Early Warning Signals Based on Momentary Affect Dynamics can Expose Nearby Transitions in Depression: A Confirmatory Single-Subject Time-Series Study
title_fullStr Early Warning Signals Based on Momentary Affect Dynamics can Expose Nearby Transitions in Depression: A Confirmatory Single-Subject Time-Series Study
title_full_unstemmed Early Warning Signals Based on Momentary Affect Dynamics can Expose Nearby Transitions in Depression: A Confirmatory Single-Subject Time-Series Study
title_short Early Warning Signals Based on Momentary Affect Dynamics can Expose Nearby Transitions in Depression: A Confirmatory Single-Subject Time-Series Study
title_sort early warning signals based on momentary affect dynamics can expose nearby transitions in depression: a confirmatory single-subject time-series study
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7842626/
https://www.ncbi.nlm.nih.gov/pubmed/33569148
http://dx.doi.org/10.17505/jpor.2020.22042
work_keys_str_mv AT wichersmarieke earlywarningsignalsbasedonmomentaryaffectdynamicscanexposenearbytransitionsindepressionaconfirmatorysinglesubjecttimeseriesstudy
AT smitarnoutc earlywarningsignalsbasedonmomentaryaffectdynamicscanexposenearbytransitionsindepressionaconfirmatorysinglesubjecttimeseriesstudy
AT snippeevelien earlywarningsignalsbasedonmomentaryaffectdynamicscanexposenearbytransitionsindepressionaconfirmatorysinglesubjecttimeseriesstudy