Cargando…
Federated Learning of Electronic Health Records to Improve Mortality Prediction in Hospitalized Patients With COVID-19: Machine Learning Approach
BACKGROUND: Machine learning models require large datasets that may be siloed across different health care institutions. Machine learning studies that focus on COVID-19 have been limited to single-hospital data, which limits model generalizability. OBJECTIVE: We aimed to use federated learning, a ma...
Autores principales: | Vaid, Akhil, Jaladanki, Suraj K, Xu, Jie, Teng, Shelly, Kumar, Arvind, Lee, Samuel, Somani, Sulaiman, Paranjpe, Ishan, De Freitas, Jessica K, Wanyan, Tingyi, Johnson, Kipp W, Bicak, Mesude, Klang, Eyal, Kwon, Young Joon, Costa, Anthony, Zhao, Shan, Miotto, Riccardo, Charney, Alexander W, Böttinger, Erwin, Fayad, Zahi A, Nadkarni, Girish N, Wang, Fei, Glicksberg, Benjamin S |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7842859/ https://www.ncbi.nlm.nih.gov/pubmed/33400679 http://dx.doi.org/10.2196/24207 |
Ejemplares similares
-
Federated Learning of Electronic Health Records Improves Mortality Prediction in Patients Hospitalized with COVID-19
por: Vaid, Akhil, et al.
Publicado: (2020) -
Contrastive learning improves critical event prediction in COVID-19 patients
por: Wanyan, Tingyi, et al.
Publicado: (2021) -
Acute Kidney Injury in Patients Hospitalized With COVID-19 in New York City: Temporal Trends From March 2020 to April 2021
por: Dellepiane, Sergio, et al.
Publicado: (2021) -
Development of a federated learning approach to predict acute kidney injury in adult hospitalized patients with COVID-19 in New York City
por: Jaladanki, Suraj K, et al.
Publicado: (2021) -
Association of SARS-CoV-2 viral load at admission with in-hospital acute kidney injury: A retrospective cohort study
por: Paranjpe, Ishan, et al.
Publicado: (2021)