Cargando…
Variational-LSTM autoencoder to forecast the spread of coronavirus across the globe
Modelling the spread of coronavirus globally while learning trends at global and country levels remains crucial for tackling the pandemic. We introduce a novel variational-LSTM Autoencoder model to predict the spread of coronavirus for each country across the globe. This deep Spatio-temporal model d...
Autores principales: | Ibrahim, Mohamed R., Haworth, James, Lipani, Aldo, Aslam, Nilufer, Cheng, Tao, Christie, Nicola |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7842932/ https://www.ncbi.nlm.nih.gov/pubmed/33507932 http://dx.doi.org/10.1371/journal.pone.0246120 |
Ejemplares similares
-
Forecasting the spread of COVID-19 using LSTM network
por: Kumar, Shiu, et al.
Publicado: (2021) -
Unsupervised Pre-training of a Deep LSTM-based Stacked Autoencoder for Multivariate Time Series Forecasting Problems
por: Sagheer, Alaa, et al.
Publicado: (2019) -
Borough-level COVID-19 forecasting in London using deep learning techniques and a novel MSE-Moran’s I loss function
por: Olsen, Frederik, et al.
Publicado: (2022) -
Pedestrian Stride-Length Estimation Based on LSTM and Denoising Autoencoders
por: Wang, Qu, et al.
Publicado: (2019) -
An AutoEncoder and LSTM-Based Traffic Flow Prediction Method
por: Wei, Wangyang, et al.
Publicado: (2019)