Cargando…

Diagnostic system for the detection of severe fever with thrombocytopenia syndrome virus RNA from suspected infected animals

BACKGROUND: Severe fever with thrombocytopenia syndrome virus (SFTSV) causes severe hemorrhagic fever in humans and cats. Clinical symptoms of SFTS-infected cats resemble those of SFTS patients, whereas SFTS-contracted cats have high levels of viral RNA loads in the serum and body fluids. Due to the...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Eun-sil, Fujita, Osamu, Kimura, Masanobu, Hotta, Akitoyo, Imaoka, Koichi, Shimojima, Masayuki, Saijo, Masayuki, Maeda, Ken, Morikawa, Shigeru
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7842937/
https://www.ncbi.nlm.nih.gov/pubmed/33507990
http://dx.doi.org/10.1371/journal.pone.0238671
Descripción
Sumario:BACKGROUND: Severe fever with thrombocytopenia syndrome virus (SFTSV) causes severe hemorrhagic fever in humans and cats. Clinical symptoms of SFTS-infected cats resemble those of SFTS patients, whereas SFTS-contracted cats have high levels of viral RNA loads in the serum and body fluids. Due to the risk of direct infection from SFTS-infected cats to human, it is important to diagnose SFTS-suspected animals. In this study, a reverse transcription polymerase chain reaction (RT-PCR) was newly developed to diagnose SFTS-suspected animals without non-specific reactions. METHODOLOGY/PRINCIPLE FINDINGS: Four primer sets were newly designed from consensus sequences constructed from 108 strains of SFTSV. A RT-PCR with these four primer sets successfully and specifically detected four clades of SFTSV. Their limits of detection are 1–10 copies/reaction. Using this RT-PCR, 5 cat cases among 56 SFTS-suspected animal cases were diagnosed as SFTS. From these cats, IgM or IgG against SFTSV were detected by enzyme-linked immunosorbent assay (ELISA), but not neutralizing antibodies by plaque reduction neutralization titer (PRNT) test. This phenomenon is similar to those of fatal SFTS patients. CONCLUSION/SIGNIFICANCE: This newly developed RT-PCR could detect SFTSV RNA of several clades and from SFTS-suspected animals. In addition to ELISA and PRNT test, the useful laboratory diagnosis systems of SFTS-suspected animals has been made in this study.