Cargando…
Evaluating Deep Learning models for predicting ALK-5 inhibition
Computational methods have been widely used in drug design. The recent developments in machine learning techniques and the ever-growing chemical and biological databases are fertile ground for discoveries in this area. In this study, we evaluated the performance of Deep Learning models in comparison...
Autores principales: | Espinoza, Gabriel Z., Angelo, Rafaela M., Oliveira, Patricia R., Honorio, Kathia M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7842961/ https://www.ncbi.nlm.nih.gov/pubmed/33508008 http://dx.doi.org/10.1371/journal.pone.0246126 |
Ejemplares similares
-
Advances and Perspectives in Applying Deep Learning for Drug Design and Discovery
por: Lipinski, Celio F., et al.
Publicado: (2019) -
Transfer and Multi-task Learning in QSAR Modeling: Advances and Challenges
por: Simões, Rodolfo S., et al.
Publicado: (2018) -
Structure-Based Virtual Screening, Molecular Dynamics and Binding Free Energy Calculations of Hit Candidates as ALK-5 Inhibitors
por: Araujo, Sheila C., et al.
Publicado: (2020) -
Studies on the Dual Activity of EGFR and HER-2 Inhibitors Using Structure-Based Drug Design Techniques
por: de Angelo, Rafaela Molina, et al.
Publicado: (2018) -
The role of Alk-1 and Alk-5 in the mechanosensing of chondrocytes
por: Sanz-Ramos, Patricia, et al.
Publicado: (2014)